酰胺溶剂在某些反应条件下容易降解,是仲胺的另一个来源。例如,在长时间的高反应温度下,N,N-二甲基甲酰胺可以降解为二甲胺,二甲胺可以与亚硝酸反应形成NDMA。N-甲基吡咯烷酮、N,N-二甲基乙酰胺和N,N-二乙基乙酰胺也有类似的降解途径,形成仲胺,仲胺可以与亚硝酸反应形成亚硝胺杂质。仲胺也可能作为杂质存在于酰胺溶剂中。例如,可以与亚硝酸反应形成NDMA的二甲胺可能作为杂质存在于N,N-二甲基甲酰胺中。用作原料药合成试剂的叔胺和季胺可能含有其他胺杂质。研究院在临床前药物质量研究、杂质研究、基因毒性杂质研究、包材相容性研究等方面形成特色和优势。山东药品中NDSRIs杂质研究
在某些药品中意外发现亚硝胺杂质(可能或有可能是人类致ai物)明确表明,需要制定风险评估策略来评估任何药品中亚硝胺的潜在存在。在一些药品中发现亚硝胺后,FDA和其他国际监管机构对受影响的 API 和药品中的这些杂质进行了详细分析。根据该机构目前的理解,本指南讨论了亚硝胺形成的潜在根本原因,并建议API和药品制造商和申请人应使用FDA 应采取本指南中描述的三步缓解策略,即:(1)对已批准或上市销售的产品以及正在申请的产品进行风险评估;四川小分子亚硝胺杂质研究分析山东大学淄博生物医药研究院可开展质量标准建立与稳定性考察等工作。
显示了结构中含有二级胺官能团的API与亚硝酸盐在酸性条件下的是性反应。原料药中存在小分子亚硝胺杂质的根本原因:FDA收集的信息表明,原料药中存在亚硝胺杂质的几个一般根本原因:导致亚硝胺形成的一般条件,在仲胺、叔胺、季胺和亚硝酸盐的存在下,酸性条件下是会形成亚硝胺的。在这些条件下,亚硝酸盐可能形成亚硝酸,亚硝酸可以与胺反应形成亚硝胺。如果在前体胺存在的情况下使用亚硝酸淬灭残留的叠氮化物(一种通常用于四唑环形成或将叠氮化物官能团引入分子的试剂),则形成亚硝胺的风险更大。
ICH M7(R2)制定了一个毒理学关注阈值概念(TTC,每天1.5μg的可接受摄入量),以定义任何致ai或其他毒性影响风险可忽略不计的未经研究的化学品。被称为关注队列的有效诱变致ai物,包括N-亚硝基化合物、黄曲霉等,理论上其具有潜在重大致ai风险,摄入要低于TTC值的(即关注队列的化合物不适用TTC值)。FDA建议,当没有关于特定亚硝胺化合物的可靠致ai性数据和其他安全信息(包括细菌诱变性数据)时,应使用预测的致ai性分类方法来确定AI限值(有关致ai性分类方法的解释,请参阅RAIL指南)。研究院公共技术服务平台是由高新区管委会投资建设的功能完备、系统配套的药物研发专业技术服务机构。
如果亚硝胺杂质水平高于AI限值的药品批次已经在销售中,制造商和申请人应联系相关机构。此外,如果测试表明任何一批销售的药品不符合相关申请中规定的规格,包括亚硝胺杂质的规格,持有新药申请(NDA)和简化新药申请(ANDA)的申请人必须按照《美国联邦法规》第21篇第314.81(b)(1)条的规定提交现场警报报告。同样,持有生物制品许可证申请的申请人必须按照《美国联邦法规》第21篇第600.14条的规定报告生物制品偏差。研究新药申请赞助商应了解原料药和药品中潜在的亚硝胺杂质,以便在提交NDA或生物制剂许可证申请之前加以解决,并在整个产品开发过程中考虑本节所述的建议。山东大学淄博生物医药研究院可根据市场和项目需求灵活提供服务。北京药品中NDSRIs杂质研究分析
山东大学淄博生物医药研究院化学合成药物平台拥有微波化学合成仪、制备高效液相色谱仪、中低压制备色谱等。山东药品中NDSRIs杂质研究
上述产生亚硝基胺杂质的多种根本原因可能发生在同一API工艺中。因此,可能需要多种策略来确定亚硝胺形成的所有潜在来源。API纯度、特性和已知杂质的典型常规测试(如高效液相色谱法)不太可能检测到亚硝胺杂质的存在。此外,每种异常模式都可能导致来自同一工艺和同一API制造商的不同批次的不同数量的亚硝胺,在某些批次中检测到亚硝胺杂质,但并非全部。“低”风险过程是指那些通常不易形成亚硝胺的过程。原料药以外来源的药品中的亚硝胺杂质,亚硝酸盐是常见的亚硝化杂质,据报道,许多赋形剂中的亚硝酸盐含量为百万分之几(ppm)。山东药品中NDSRIs杂质研究