光刻胶基本参数
  • 品牌
  • 蔚云
  • 型号
  • 25KG/桶
光刻胶企业商机

起初应用于 EUV 光刻的光刻胶为聚甲基丙烯酸甲酯(PMMA)。PMMA曾广泛应用于193nm光刻和电子束光刻工艺中,前者为EUV的前代技术,后者的反应机理与EUV光刻有较多的相似点。PMMA具有较高的透光性和成膜性、较好的黏附性,通常应用为正性光刻胶。在光子的作用下,PMMA发生主链碳-碳键或侧基酯键的断裂,形成小分子化合物于显影液。早在1974年,Thompson等就利用PMMA作为光刻胶,研究了其EUV光刻性能。随后,PMMA成为了重要的工具光刻胶。亚甲基双苯醚型光刻胶:这种类型的光刻胶适用于制造精度较低的电路元件。嘉定KrF光刻胶

三苯基硫鎓盐是常用的EUV光刻胶光致产酸剂,也具有枝状结构。佐治亚理工的Henderson课题组借鉴主体材料键合光敏材料的思路,制备了一种枝状单分子树脂光刻胶TAS-tBoc-Ts。虽然他们原本是想要合成一种化学放大型光刻胶,但根据是否后烘,TAS-tBoc-Ts既可呈现负胶也可呈现正胶性质。曝光后若不后烘,硫鎓盐光解形成硫醚结构,生成的光酸不扩散,不会引发t-Boc的离去;曝光区域不溶于水性显影液,未曝光区域为离子结构,微溶于水性显影液,因而可作为非化学放大型负性光刻胶。曝光后若后烘,硫鎓盐光解产生的酸引发链式反应,t-Boc基团离去露出酚羟基;使用碱性显影液,曝光区域的溶解速率远远大于未曝光区域,因此又可作为化学放大型正性光刻胶。这个工作虽然用DUV光刻和电子束光刻测试了此类光刻胶的光刻性能,但由于EUV光刻机理与电子束光刻的类似性,本工作也为新型EUV光刻胶的设计开辟了新思路。昆山黑色光刻胶树脂从化学组成来看,金属氧化物光刻胶主要为稀土和过渡金属有机化合物。

在半导体集成电路制造行业;主要使用g线光刻胶、i线光刻胶、KrF光刻胶、ArF光刻胶等。在大规模集成电路的制造过程中,一般要对硅片进行超过十次光刻。在每次的光刻和刻蚀工艺中,光刻胶都要通过预烘、涂胶、前烘、对准、曝光、后烘、显影和蚀刻等环节,将光罩(掩膜版)上的图形转移到硅片上。

光刻胶是集成电路制造的重要材料:光刻胶的质量和性能是影响集成电路性能、成品率及可靠性的关键因素。光刻工艺的成本约为整个芯片制造工艺的35%,并且耗费时间约占整个芯片工艺的40%-50%。光刻胶材料约占IC制造材料总成本的4%,市场巨大。因此光刻胶是半导体集成电路制造的重要材料。

除了枝状分子之外,环状单分子树脂近年来也得到了迅速发展。这些单分子树脂的环状结构降低了分子的柔性,从而通常具有较高的玻璃化转变温度和热化学稳定性。由于构象较多,此类分子也难以结晶,往往具有很好的成膜性。起初将杯芳烃应用于光刻的是东京科技大学的Ueda课题组,2002年起,他们报道了具有间苯二酚结构的杯芳烃在365nm光刻中的应用。2007年,瑞士光源的Solak等利用对氯甲氧基杯芳烃获得了线宽12.5nm、占空比1∶1的密集线条,但由于为非化学放大光刻胶,曝光机理为分子结构被破坏,灵敏度较差,为PMMA的1/5。有机-无机杂化光刻胶结合了有机和无机材料的优点,在可加工性、抗蚀刻性、极紫外光吸收具有优势。

从光刻设备角度来看,EUV光刻与其他波长光刻关键的两点差异是光源强度和散粒噪声。尽管有多种方式可获得EUV光,商用EUV光刻机使用的是激光激发的等离子体(LPP)发光,其输出功率曾长期是制约EUV光刻技术商用的瓶颈问题;另外,EUV光刻使用的是反射镜成像系统,而非传统的透过折射镜片组,且效率不高。因此在EUV光刻发展的早期,通常都要求EUV光刻胶具有较高的灵敏度。同时,EUV光子能量(约为92eV)远高于以前几代光刻技术光源的光子能量(是193nm光子能量的14.4倍),也就是说,对于同样的曝光能量,光子数目远少于前几代的光刻技术,这就导致散粒噪声增加,从而造成线宽/线边缘粗糙度的升高。而灵敏度过高并不利于克服散粒噪声的影响,所以随着EUV光源功率不断提升,业界对EUV光刻胶的要求从“提高灵敏度”逐渐变为“利用一定程度的灵敏度来降低粗糙度”。根据应用领域不同,光刻胶可分为 PCB 光刻胶、LCD 光刻胶和半导体光刻胶,技术门槛逐渐递增。光交联型光刻胶其他助剂

光刻胶属于技术和资本密集型行业,目前主要技术主要掌握在日、美等国际大公司手中,全球供应市场高度集中。嘉定KrF光刻胶

近年来,随着EUV光源功率提高,制约EUV光刻胶发展的瓶颈已经从灵敏度变为粗糙度。化学放大光刻胶涉及酸扩散过程,会直接影响光刻胶的粗糙度和分辨率;再加上EUV光刻特有的散粒噪声问题,过高的灵敏度反而可能成为弊端。因此,一度沉寂的非化学放大光刻胶又重新受到重视。在PMMA基础之上,研发人员开发了一系列光反应机理类似的链断裂型光刻胶。由于PMMA的灵敏度过低,因此灵敏度仍然是制约其应用的重要问题。研究者们主要通过两种方法来改善其性能:在光刻胶主体材料的主链或侧基中引入对EUV光吸收更强的原子,如F、S、O等,以及利用更容易发生断链过程的高分子作为骨架。嘉定KrF光刻胶

与光刻胶相关的**
与光刻胶相关的标签
信息来源于互联网 本站不为信息真实性负责