2011年,Whittaker课题组又使用聚砜高分子作为主体材料,制备了链断裂型非化学放大光刻胶。聚砜与聚碳酸酯类似,主链比PMMA更容易断裂,因此该光刻胶的灵敏度更高。但较高的反应活性也降低了其稳定性,因此Whittaker课题组又利用原子转移自由基聚合法(ARTP)制备了一种PMMA-聚砜复合高分子,主链为聚砜,支链为PMMA,呈梳形结构。PMMA的加入增强了光刻图形的完整性,可获得30nm线宽、占空比为1∶1的线条,最高分辨率可达22.5nm,灵敏度可达4~6mJ·cm−2。不过聚砜在曝光时会分解出二氧化硫和烯烃碎片,产气量较大。一旦达成合作,光刻胶厂商和下游集成电路制造商会形成长期合作关系。PCB光刻胶集成电路材料
考虑到杯芳烃化合物的诸多优点,2006年,Ober课题组将其酚羟基用t-Boc基团部分保护,制备了可在EUV光下实现曝光的化学放大型光刻胶,获得了50nm线宽、占空比为1∶2的光刻线条和40nm线宽的“L”形光刻图形,与非化学放大型杯芳烃光刻胶相比,灵敏度提高。随后Ober课题组又发展了一系列具有杯芳烃结构的单分子树脂光刻胶,研究了活性基团的数量、非活性基团的种类和数量对玻璃化转变温度、成膜性及光刻性能的影响,并开发了其超临界CO2显影工艺。此外,日本三菱瓦斯化学的Echigo等利用乙氧基作为酚羟基的保护基团,制备的杯芳烃化合物可在17.5mJ·cm-2剂量下实现26nm线宽的EUV光刻图形。浙江光交联型光刻胶溶剂光刻胶又称光致抗蚀剂,是一种对光敏感的混合液体。
一般的光刻工艺流程包括以下步骤:1)旋涂。将光刻胶旋涂在基底上(通常为硅,也可以为化合物半导体)。2)前烘。旋涂后烘烤光刻胶膜,确保光刻胶溶剂全部挥发。3)曝光。经过掩模版将需要的图形照在光刻胶膜上,胶膜内发生光化学反应。4)后烘。某些光刻胶除了需要发生光反应,还需要进行热反应,因此需要在曝光后对光刻胶膜再次烘烤。5)显影。曝光(及后烘)后,光刻胶的溶解性能发生改变,利用适当的显影液将可溶解区域去除。经过这些过程,就完成了一次光刻工艺,后续将视器件制造的需要进行刻蚀、离子注入等其他工序。一枚芯片的制造,往往需要几次甚至几十次的光刻工艺才能完成。
与EUV光源相比,UV光源更容易实现较高的功率;但UV曝光不能满足分辨线条的形成条件。因此PSCAR实际上是利用EUV曝光形成图案,再用UV曝光增加光反应的程度,从而实现提高EUV曝光灵敏度的效果。在起初的PSCAR体系基础之上,Tagawa课题组还开展了一系列相关研究,并通过在体系中引入对EUV光敏感的光可分解碱,开发出了PSCAR1.5,引入对UV光敏感的光可分解碱,开发出了PSCAR2.0。光可分解碱的引入可以减少酸扩散,使PSCAR光刻胶体系的对比度提高,粗糙度降低,也进一步提高了光刻胶的灵敏度。必须规定光刻胶的闲置期限和存贮温度环境。
由于早期制约EUV光刻发展的技术瓶颈之一是光源功率太小,因此,在不降低其他光刻性能的前提下提高EUV光刻胶的灵敏度一直是科研人员的工作重点。为了解决这一问题,2013年,大阪大学的Tagawa等提出了光敏化化学放大光刻胶(PSCAR™)。与其他EUV化学放大光刻胶不同的是,PSCAR体系除了需在掩模下进行产生图案的EUV曝光,还要在EUV曝光之后进行UV整片曝光。PSCAR体系中除了有主体材料、光致产酸剂,还包括光敏剂前体。这是一种模型光敏剂前体的结构,它本身对UV光没有吸收,但在酸性条件下可以转化为光敏剂,对UV光有吸收。中国光刻胶市场规模约88亿人民币。上海LCD触摸屏用光刻胶溶剂
光刻胶的技术壁垒包括配方技术,质量控制技术和原材料技术。PCB光刻胶集成电路材料
光刻胶主要由主体材料、光敏材料、其他添加剂和溶剂组成。从化学材料角度来看,光刻胶内重要的成分是主体材料和光敏材料。光敏材料在光照下产生活性物种,促使主体材料结构改变,进而使光照区域的溶解度发生转变,经过显影和刻蚀,实现图形从掩模版到基底的转移。对于某些光刻胶来说,主体材料本身也可以充当光敏材料。依据主体材料的不同,光刻胶可以分为基于聚合物的高分子型光刻胶,基于小分子的单分子树脂(分子玻璃)光刻胶,以及含有无机材料成分的有机-无机杂化光刻胶。本文将主要以不同光刻胶的主体材料设计来综述EUV光刻胶的研发历史和现状。PCB光刻胶集成电路材料