光刻胶的曝光机理很复杂。Ober课题组和Giannelis课题组指出,其中起主导作用的应为配体交换过程。若体系内有光致产酸剂或光自由基引发剂,它们在受到光照后形成新的配体,与金属纳米颗粒表面的配体交换;若不加入光敏剂,光照后纳米颗粒壳层的少量羧酸基团会与纳米颗粒解离,从而改变金属氧化物电荷,使双电层变宽,促使纳米颗粒的聚集。但美国德克萨斯大学达拉斯分校的Mattson等通过原位红外光谱、X射线光电子能谱和密度泛函计算等手段发现,溶解度转变过程主要是由于配体发生了自由基引发的不饱和碳-碳双键交联反应导致的。此类光刻胶的反应机理还有待进一步研究。金属氧化物光刻胶使用金属离子及有机配体构建其主体结构,借助光敏基团实现光刻胶所需的性能。光交联型光刻胶其他助剂
1983年,Joy以PMMA作为模型化合物,利用蒙特卡罗方法计算了EUV光刻的空间分辨率。1989年,Kurihara课题组利用PMMA评测了光学器件,并测试了EUV光对PMMA膜的透过性。1990年,Windt课题组利用14nmEUV光对PMMA光刻胶进行光刻,获得了50nm的线条。2001~2004年,Bokor课题组利用PMMA光刻胶、Shipley公司早期工具光刻胶EUV-2D先后评测了其自制的EUV光刻设备和美国光源的EUV光刻线站的性能。可见,在EUV光技术发展早期,PMMA光刻胶对EUV光刻设备的调试、测试起了重要作用。但是PMMA的曝光机理不涉及化学放大过程,因此其灵敏度较差,而早期制约EUV光刻技术发展的瓶颈问题之一便是曝光光源功率很小,因而以PMMA为主的非化学放大型光刻胶一度被化学放大型光刻胶取代。昆山光聚合型光刻胶光引发剂按曝光波长可分为紫外光刻胶、深紫外光刻胶、极紫外光刻胶、电子束光刻胶、离子束光刻胶、X射线光刻胶等。
2014年,Gonsalves课题组在侧基连接硫鎓盐的高分子光刻胶基础之上,制备了一种侧基含有二茂铁基团高分子光刻胶。其反应机理与不含二茂铁的光刻胶类似,但二茂铁的引入增强了光刻胶的热稳定性和灵敏度,可实现25nm线宽的曝光。2015年,课题组报道了一系列钯和铂的配合物,用于正性EUV曝光。配合物中包括极性较大的草酸根配体,也有极性较小的1,1-双(二苯基膦)甲烷或1,2-二(二苯基膦)乙烷配体。EUV曝光后,草酸根分解形成二氧化碳或一氧化碳,配体只剩下低极性部分,从而可以用低极性的显影液洗脱;未曝光区域由于草酸根的存在,无法溶于显影液,实现正性曝光。这一系列配合物中,灵敏度较高的化合物为1,2-二(二苯基膦)乙烷配草酸钯,可以在50mJ·cm−2的剂量下得到30nm的线宽。
考虑到杯芳烃化合物的诸多优点,2006年,Ober课题组将其酚羟基用t-Boc基团部分保护,制备了可在EUV光下实现曝光的化学放大型光刻胶,获得了50nm线宽、占空比为1∶2的光刻线条和40nm线宽的“L”形光刻图形,与非化学放大型杯芳烃光刻胶相比,灵敏度提高。随后Ober课题组又发展了一系列具有杯芳烃结构的单分子树脂光刻胶,研究了活性基团的数量、非活性基团的种类和数量对玻璃化转变温度、成膜性及光刻性能的影响,并开发了其超临界CO2显影工艺。此外,日本三菱瓦斯化学的Echigo等利用乙氧基作为酚羟基的保护基团,制备的杯芳烃化合物可在17.5mJ·cm-2剂量下实现26nm线宽的EUV光刻图形。在PCB行业:主要使用的光刻胶有干膜光刻胶、湿膜光刻胶、感光阻焊油墨等。
加强光刻胶的机理研究,对新型光刻胶的设计开发、现有光刻技术的改进都是大有裨益的。另外,基础研究也需要贴合产业发展的实际和需求,如含铁、钴的光刻胶,尽管具有较好的光刻效果,但由于铁、钴等元素在硅基底中扩散速度很快,容易造成器件的污染,基本没有可能投入到产业的应用中去。光刻胶的研发和技术水平,能够影响一个国家半导体工业的健康发展。2019年,日本就曾经通过限制EUV光刻胶出口来制约韩国的芯片生产。因此,唯有加强我国自主的光刻胶研发,随着光刻技术的发展,不断开发出新材料、新配方、新工艺,才能保证我国的半导体工业的快速和健康发展。有机-无机杂化光刻胶被认为是实现10nm以下工业化模式的理想材料。华东黑色光刻胶光引发剂
中国半导体光刻胶的快速崛起离不开中国整体半导体产业的发展。光交联型光刻胶其他助剂
全息光刻-单晶硅各向异性湿法刻蚀是制作大高度比硅光栅的一种重要且常用的方法,全息光刻用来产生光刻胶光栅图形,单晶硅各向异性湿法刻蚀将图形转移到硅基底中形成硅光栅。这种方法制作的硅光栅质量非常高,侧壁可以达到原子级光滑,光栅线条的高度比可以高达160。但由于单晶硅各向异性湿法刻蚀在垂直向下刻蚀的同时存在着横向钻蚀,所以要获得大高度比的硅光栅,光刻胶光栅图形的占宽比要足够大,且越大越好。占宽比越大,单晶硅各向异性湿法刻蚀的工艺宽容度越大,成功率越高,光栅质量越好。光交联型光刻胶其他助剂