有研究结果表明,在EUV光照下,某特定光刻胶分子每吸收一个光子可以产生2.1个活性物种,这一效率分别是KrF光刻和ArF光刻的6倍和15倍。由于在光刻胶材料中有二次电子的产生,EUV光刻在机理上与电子束光刻有相近之处。因为商用EUV光刻机价格昂贵,对光刻胶材料研发人员开放的同步辐射EUV干涉线站机时有限,所以近年来,在EUV光刻胶的研发过程中也常利用电子束光刻开展相关机理、工艺研究和基本性能的评测,也有一些尚未实际应用于EUV光刻但已有电子束光刻研究结果的光刻胶。光刻胶市场 ArF 与 KrF 占据主流,EUV 增长较快。江浙沪负性光刻胶光引发剂
全息光刻-单晶硅各向异性湿法刻蚀是制作大高度比硅光栅的一种重要且常用的方法,全息光刻用来产生光刻胶光栅图形,单晶硅各向异性湿法刻蚀将图形转移到硅基底中形成硅光栅。这种方法制作的硅光栅质量非常高,侧壁可以达到原子级光滑,光栅线条的高度比可以高达160。但由于单晶硅各向异性湿法刻蚀在垂直向下刻蚀的同时存在着横向钻蚀,所以要获得大高度比的硅光栅,光刻胶光栅图形的占宽比要足够大,且越大越好。占宽比越大,单晶硅各向异性湿法刻蚀的工艺宽容度越大,成功率越高,光栅质量越好。普陀湿膜光刻胶按照化学结构分类:光刻胶可以分为光聚合型,光分解型,光交联型和化学放大型。
由于早期制约EUV光刻发展的技术瓶颈之一是光源功率太小,因此,在不降低其他光刻性能的前提下提高EUV光刻胶的灵敏度一直是科研人员的工作重点。为了解决这一问题,2013年,大阪大学的Tagawa等提出了光敏化化学放大光刻胶(PSCAR™)。与其他EUV化学放大光刻胶不同的是,PSCAR体系除了需在掩模下进行产生图案的EUV曝光,还要在EUV曝光之后进行UV整片曝光。PSCAR体系中除了有主体材料、光致产酸剂,还包括光敏剂前体。这是一种模型光敏剂前体的结构,它本身对UV光没有吸收,但在酸性条件下可以转化为光敏剂,对UV光有吸收。
2011年,Whittaker课题组又使用聚砜高分子作为主体材料,制备了链断裂型非化学放大光刻胶。聚砜与聚碳酸酯类似,主链比PMMA更容易断裂,因此该光刻胶的灵敏度更高。但较高的反应活性也降低了其稳定性,因此Whittaker课题组又利用原子转移自由基聚合法(ARTP)制备了一种PMMA-聚砜复合高分子,主链为聚砜,支链为PMMA,呈梳形结构。PMMA的加入增强了光刻图形的完整性,可获得30nm线宽、占空比为1∶1的线条,最高分辨率可达22.5nm,灵敏度可达4~6mJ·cm−2。不过聚砜在曝光时会分解出二氧化硫和烯烃碎片,产气量较大。光刻胶通常是以薄膜形式均匀覆盖于基材表面。
从光刻设备角度来看,EUV光刻与其他波长光刻关键的两点差异是光源强度和散粒噪声。尽管有多种方式可获得EUV光,商用EUV光刻机使用的是激光激发的等离子体(LPP)发光,其输出功率曾长期是制约EUV光刻技术商用的瓶颈问题;另外,EUV光刻使用的是反射镜成像系统,而非传统的透过折射镜片组,且效率不高。因此在EUV光刻发展的早期,通常都要求EUV光刻胶具有较高的灵敏度。同时,EUV光子能量(约为92eV)远高于以前几代光刻技术光源的光子能量(是193nm光子能量的14.4倍),也就是说,对于同样的曝光能量,光子数目远少于前几代的光刻技术,这就导致散粒噪声增加,从而造成线宽/线边缘粗糙度的升高。而灵敏度过高并不利于克服散粒噪声的影响,所以随着EUV光源功率不断提升,业界对EUV光刻胶的要求从“提高灵敏度”逐渐变为“利用一定程度的灵敏度来降低粗糙度”。在半导体集成电路制造行业:主要使用g线光刻胶、i线光刻胶、KrF光刻胶、ArF光刻胶等。昆山LCD触摸屏用光刻胶树脂
光刻胶下游为印刷电路板、显示面板和电子芯片,广泛应用于消费电子、航空航天等领域。江浙沪负性光刻胶光引发剂
尽管HSQ可以实现较好的EUV光刻图案,且具有较高的抗刻蚀性能,但HSQ较低的灵敏度无法满足EUV光刻的需求,且价格非常昂贵,难以用于商用的EUV光刻工艺中。另外,尽管HSQ中Si含量很高,但由于O含量也很高,所以HSQ并未展现含Si光刻胶对EUV光透光性的优势,未能呈现较高的对比度。因此,研发人员将目光转向侧基修饰的高分子光刻胶。使用含硅、含硼单元代替高分子光刻胶原本的功能性含氧侧基,既可有效降低光刻胶对EUV光的吸收,又有助于提高对比度,也可提高抗刻蚀性。江浙沪负性光刻胶光引发剂