光刻胶的两大主要研究小组:杨国强课题组和李嫕课题组,分别设计并制备了双酚A型和螺双芴型的单分子树脂化学放大光刻胶,前者可通过调节离去基团的数量来改变光刻胶的灵敏度,后者则通过螺双芴结构降低材料的结晶性,提高了成膜性性能。两种光刻胶都可以实现小于25nm线宽的光刻线条。随后,杨国强课题组还报道了一种可作为负性光刻胶的双酚A单分子树脂光刻胶,该分子中具有未经保护的酚羟基,在光酸的作用下可以与交联剂四甲氧基甲基甘脲反应形成交联网状结构,从而无法被碱性显影液洗脱,可在电子束光刻下实现80nm以下的线条,在EUV光刻中有潜在的应用。此外,两个课题组还分别就两个系列光刻胶的产气情况开展研究。有机-无机杂化光刻胶结合了有机和无机材料的优点,在可加工性、抗蚀刻性、极紫外光吸收具有优势。苏州PCB光刻胶溶剂
为了解决EUV光刻面临的新问题,适应EUV光刻的新特点,几大类主体材料相继应用于EUV光刻的实践之中,常用的策略如下。1)提高灵敏度:引入对EUV吸收截面大的元素,使用活化能更低的反应基团和量子效率更高的光敏剂,应用化学放大机理;2)提高分辨率:减小化合物的体积(即降低化合物的分子量),增强光刻胶对基底的黏附力和本身的刚性;3)降低粗糙度:减小化合物的体积或纳米颗粒的尺寸,减少活性物种在体系内部的扩散,降低光刻胶的灵敏度;4)提高对比度:降低光刻胶主体材料对光的吸收;5)提高抗刻蚀性:引入金属元素或芳香结构;6)提高成膜性能:引入非对称、非平面的柔性基团以防止结晶。江浙沪负性光刻胶印刷电路板金属氧化物光刻胶使用金属离子及有机配体构建其主体结构,借助光敏基团实现光刻胶所需的性能。
2005年,研究人员利用美国光源的高数值孔径微观曝光工具评价了RohmandHaas公司研发的新型ESCAP光刻胶MET-1K,并将其与先前的EUV-2D光刻胶相比较。与EUV-2D相比,MET-1K添加了更多的防酸扩散剂。使用0.3NA的EUV曝光工具,在90~50nm区间,EUV-2D和MET-1K的图形质量都比较好;但当线宽小于50nm时,EUV-2D出现明显的线条坍塌现象,而MET-1K则直到35nm线宽都能保持线条完整。在45nm线宽时,MET-1K仍能获得较好的粗糙度,LER达到6.3nm。可见MET-1K的光刻性能要优于EUV-2D。从此,MET-1K逐渐代替EUV-2D,成为新的EUV光刻设备测试用光刻胶。
2005年,IBM公司的Naulleau等利用MET@ALS评测了KRS光刻胶的EUV性能,可获得线宽35nm、占空比1∶1的图案和线宽28.3nm、占空比1∶4的图案(图13。不过,KRS在曝光过程中需要有少量的水参与,因此其曝光设备中需要引入水蒸气。由于EUV光刻需要在高真空环境中进行,任何气体的引入都会导致真空环境的破坏、光路和掩模版的污染,所以尽管KRS呈现出比MET-1K更高的分辨率,但依然未能广泛应用于EUV光刻技术中。上述化学放大光刻胶基本沿用了KrF光刻胶的材料,随着EUV光刻技术的不断进展,旧材料已不能满足需求。聚合度越小,发生微相分离的尺寸越小,对应的光刻图形越小。
关于光刻胶膜对EUV光的吸收能力,研究人员的观点曾发生过较大的转变。刚开始研究人员认为光刻胶应对EUV尽量透明,以便EUV光可以顺利透过光刻胶膜。对于紫外、深紫外光刻来说,如果光子不能透过胶膜,则会降低光刻的对比度,即开始曝光剂量和完全曝光剂量之间存在较大的差值,从而使曝光边界处图案不够陡直。所以,早期的EUV光刻胶研发通常会在分子结构中引入Si、B等EUV吸收截面较小的元素,而避免使用F等EUV吸收截面较大的元素。随后研究人员又发现,即使是对EUV光吸收较强的主体材料,还是“过于透明”了,以至于EUV光刻的灵敏度难以提高。因此,科研人员开始转向寻求吸收更强的主体材料,研发出了一系列基于金属元素的有机-无机杂化光刻胶。半导体光刻胶的涂敷方法主要是旋转涂胶法,具体可以分为静态旋转法和动态喷洒法。江苏光刻胶树脂
光刻胶下游为印刷电路板、显示面板和电子芯片,广泛应用于消费电子、航空航天等领域。苏州PCB光刻胶溶剂
利用基团变化导致光刻胶溶解性变差构建负性光刻胶的,还有日本日立公司的Kojima等,他们与日本东京应化工业的研发人员开发了一种枝状单分子树脂分子3M6C-MBSA-BL。3M6C-MBSA-BL内含有γ-羟基羧酸基团,在强酸的作用下,可以发生分子内脱水,由易溶于碱性显影液的羧酸变为难溶于羧酸显影液的内酯,因而可作为负胶使用。Kojima等只检测了其作为电子束光刻胶的性能,获得了40nm线宽的线条,呈现出较好的抗刻蚀性,但它作为EUV光刻胶的能力还有待验证。苏州PCB光刻胶溶剂