由于石墨烯的优越特性,石墨烯粉体的潜在市场规模至少在万亿元以上。就目前情况来讲,石墨烯市场化的至大阻碍是市场需求和价格,未来产业化之路遥遥,需要部门的支持,和研发人员的开拓创新,相信通过共同努力,石墨烯粉体将在更多的领域大放异彩。作为电极材料,石墨烯粉体是一种优异的阳极材料,被认为是可以替代硅的芯片材料。此外,在柔性屏幕、可穿戴设备、太阳能充电等领域的应用还有待挖掘。石墨烯粉体具有优异的机械性能和生物相容性。作为增强填料,可以明显提高生物材料的力学性能。在环保过滤材料中,它发挥出色,提高过滤精度。化工功能性纳米粉体求购
国内的石墨烯粉体和石墨烯薄膜已经具备量产的能力,预计一系列工业化应用很快会大规模铺开。石墨烯粉体作为一种高科技材料,在生产过程中研发、技术和设备都非常重要,生产中的人力成本很小。所谓的石墨烯粉体,实际上就是单层石墨烯和多层石墨烯的混合物粉体。其应用领域也为普遍。把它添加到电缆中,将改善导体材料的性能,电缆的利润率也将会得到提升,市场前景非常大。石墨烯产品一般分为两种形式:石墨烯粉末和石墨烯薄膜。石墨烯粉体目前主要用于新能源、防腐涂料、复合材料、生物传感器等领域,应用范围较广。兰州氧化锌粉末功能性纳米粉体能增强涂料的耐腐蚀性,延长材料使用寿命。
纳米氧化锌是一种多功能性的新型无机材料,其颗粒大小约在1~100纳米。由于晶粒的细微化,其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点。近年来发现它在催化、光学、磁学、力学等方面展现出许多特殊功能,使其在陶瓷、化工、电子、光学、生物、医药等许多领域有重要的应用价值,具有普通氧化锌所无法比较的特殊性和用途。纳米氧化锌在纺织、涂料等领域可用于紫外光遮蔽材料、抗菌剂、荧光材料、光催化材料等。由于纳米氧化锌一系列的优异性和十分诱人的应用前景,因此研发纳米氧化锌已成为许多科技人员关注的焦点。
纳米氧化锌可以在水介质中连续释放锌离子,锌离子会进入细胞膜,破坏细胞膜,在细胞内与蛋白质的某些基团反应时,破坏细菌和细胞中蛋白质的空间结构,导致细胞中的蛋白酶失活进而杀死细菌。破坏之后,锌离子会从细菌中游离出来,重复杀菌过程。纳米氧化锌可以与细菌表面的细胞壁相互作用,破坏细菌的细胞壁,导致内容物被释放从而杀灭细菌。在紫外线的照射下,纳米氧化锌会产生空穴电子对,电子和空穴分别从导带和价带迁移到氧化锌颗粒表面,表面吸附的水或羟基被转变成氢氧自由基,吸附的氧气转变成活性氧,氢氧自由基和活性氧具有极强的化学活性,能与大多数有机物发生反应从而杀死大多数细菌和病毒。由于纳米氧化锌粒径过小,电子和空穴从导带和价带到达晶体表面的时间被大幅度降低,空穴和电子复合的几率也降低,因此粒径处于纳米量级的氧化锌杀菌性能更优。功能性纳米粉体在生物医药领域的应用,为疾病的诊断和治疗带来了新的突破。
功能性纳米粉体抑菌始终是人们美化生活、保障健康的重要任务,纳米科技尤其是用来实现这一目标的工具之一。通常所说的抑菌,包括了抑制、杀灭、消除细菌分泌的垃圾以及预防等内容。在各种各样的菌种中,我们一般选定大肠杆菌、金黄色葡萄球菌、白色念珠菌和黑曲霉菌作为检测抑菌效果的表示菌种。在多种的抑菌方法中,采用抑菌剂是应用行业广、适应菌种量大、简便易行且高效的方法,适用于抑菌材料的大批量生产。隔热降温纳米涂料隔热纺织品可以有效缓解人们长时间处于阳光持续照射或高温环境中时所产生的不适感,对人体形成较好的防护作用。功能性纳米粉体在电子材料领域的应用,为高性能器件的制造提供了可能。化工功能性纳米粉体求购
精确控制功能性纳米粉体的粒径和分布,是获得高性能复合材料的关键。化工功能性纳米粉体求购
传统的远红外陶瓷粉的制备方法有液相沉淀法和固相合成法2种,其基本工艺如下:液相沉淀法制备工艺:配料→溶解→加表面活性剂→沉淀→过滤水洗→脱水处理→干燥→气流粉碎→性能检测→备用。固相合成法工艺:配料称量→球磨混合→高温合成→磨细→过筛→性能检测→备用。烧结主要采用常规烧结或热压烧结。随着对远红外陶瓷材料研究的进一步深入,有许多更新的制备方法不断出现。如:共沉淀法、水解沉淀法、水热法、溶胶-凝胶法、微乳液法(反胶束法)等。化工功能性纳米粉体求购