FPC柔性线路板常见的一些工艺知识
1、FPC是柔性的线路板可以折叠弯曲,一般用做翻盖手机的上下部分连接、电池的保护电路等。
为了保证FPC的平整度生产厂家出货之前一般会对FPC进行压平处理,并且由于FPC是柔性的所以很难采用抽真空包装。所以在传递和使用过程种注意保证FPC的平整度尽量不要折弯。
2、FPC一般为1~2层,多层的FPC比较少见。FPC的基材和Cover Layer一般采用聚酰亚胺,基材和铜箔之间压和成一体。有些FPC的厚度以铜箔的厚度标识如1.5OZ,2.0OZ。
与PCB不同的是Cover Layer在铜箔上的开口一般小于铜箔面积而PCB上Solder Mask面积一般大于铜箔的面积。需要注意的一点就是FPC基材和铜箔之间靠树脂粘和,有些情况下树脂会溢出造成焊盘污染导致漏焊。
3、FPC的废边(Waste Area,没有电路的边缘部分)部分一般采用2种工艺。一种叫Solid Copper,既采用整体的铜箔覆盖。
PCB在许多领域都有广泛的应用,如通信、计算机、工业控制和医疗器械等。天津中小批量PCB厂家
随着PCB技术的不断发展,它的应用范围也越来越大量。PCB不仅被广泛应用于计算机、通信设备和消费电子产品等领域,还被应用于航空航天、医疗设备和工业控制等比较好领域。PCB的快速发展不仅推动了电子技术的进步,也促进了各个行业的发展。PCB的发展离不开电子技术的进步,而电子技术的进步又离不开PCB的支持。PCB的出现使得电子设备的制造更加高效、可靠和精确。它不仅提高了电子产品的性能,还降低了制造成本,缩短了产品的上市时间。可以说,PCB是现代电子技术发展的重要推动力。深圳6OZPCB厂商表面贴装技术使得PCB更加紧凑和高效。
PCB还广泛应用于汽车领域。现代汽车中的各种电子设备,如发动机控制单元、车载娱乐系统、导航系统等,都离不开PCB的支持。PCB为这些电子设备提供了电气连接和信号传输,实现了汽车的各种功能。例如,发动机控制单元的PCB连接了发动机的各个传感器和执行器,实现了发动机的控制和调节。车载娱乐系统的PCB连接了音频设备、视频设备等,实现了音乐和视频的播放。导航系统的PCB则连接了GPS模块、显示屏等,实现了导航和地图显示。此外,PCB还在医疗设备、航空航天、工业控制等领域有着普遍的应用。医疗设备中的各种电子设备,如心电图仪、血压计、体温计等,都离不开PCB的支持。航空航天领域中的各种电子设备,如飞行控制系统、导航系统等,也都离不开PCB的支持。工业控制领域中的各种电子设备,如PLC、变频器等,同样离不开PCB的支持。
随着21世纪的到来,PCB的发展进入了一个新的阶段。随着电子产品的不断更新换代,对PCB的要求也越来越高。高密度互连、柔性PCB和多层板等新技术的出现,使得PCB的设计和制造更加复杂和精细。此外,环保意识的增强也促使PCB制造业转向更加环保和可持续的方向。总的来说,PCB的发展历程经历了从手工操作到自动化、数字化和全球化的演进过程。它的出现和发展,极大地推动了电子技术的进步和电子产品的普及。随着科技的不断进步,PCB的未来将会面临更多的挑战和机遇,我们有理由相信,PCB将继续发挥重要作用,推动电子产业的发展。线路板按层数来分的话分为单面板,双面板,和多层线路板三个大的分类。
在高速PCB设计时,设计者应该从那些方面去考虑EMC、EMI的规则呢?
一般EMI/EMC设计时需要同时考虑辐射(radiated)与传导(conducted)两个方面。前者归属于频率较高的部分(>30MHz)后者则是较低频的部分(<30MHz)。所以不能只注意高频而忽略低频的部分。
一个好的EMI/EMC设计必须一开始布局时就要考虑到器件的位置,PCB叠层的安排,重要联机的走法,器件的选择等,如果这些没有事前有较佳的安排,事后解决则会事倍功半,增加成本。
例如时钟产生器的位置尽量不要靠近对外的连接器,高速信号尽量走内层并注意特性阻抗匹配与参考层的连续以减少反射,器件所推的信号之斜率(slewrate)尽量小以减低高频成分,选择去耦合(decoupling/bypass)电容时注意其频率响应是否符合需求以降低电源层噪声。
另外,注意高频信号电流之回流路径使其回路面积尽量小(也就是回路阻抗loopimpedance尽量小)以减少辐射。还可以用分割地层的方式以控制高频噪声的范围。
适当的选择PCB与外壳的接地点(chassisground)。 PCB设计在电子工程中占据了重要地位。惠州阻抗PCB线路板厂商
高密度互连PCB能提高电子设备的性能。天津中小批量PCB厂家
软硬结合板的涨缩问题:
涨缩产生的根源由材料的特性所决定,要解决软硬结合板涨缩的问题,必须先对挠性板的材料聚酰亚胺(Polyimide)做个介绍:
(1)聚酰亚胺具有优良的散热性能,可承受无铅焊接高温处理时的热冲击;
(2)对于需要更强调讯号完整性的小型装置,大部份设备制造商都趋向于使用挠性电路;
(3)聚酰亚胺具有较高的玻璃转移温度与高熔点的特性,一般情况下要在350 ℃以上进行加工;
(4)在有机溶解方面,聚酰亚胺不溶解于一般的有机溶剂。
挠性板材料的涨缩主要跟基体材料PI和胶有关系,也就是与PI的亚胺化有很大关系,亚胺化程度越高,涨缩的可控性就越强。
挠性板在开料后,在图形线路形成,以及软硬结合压合的过程中均会产生不同程度的涨缩,在图形线路蚀刻后,线路的密集程度与走向,会导致整个板面应力重新取向,ZUI终导致板面出现一般规律性的涨缩变化;在软硬结合压合的过程中,由于表面覆盖膜与基体材料PI的涨缩系数不一致,也会在一定范围内产生一定程度的涨缩。
从本质原因上说,任何材料的涨缩都是受温度的影响所导致的,在PCB冗长的制作过程中,材料经过诸多 热湿制程后,涨缩值都会有不同程度的细微变化,但就长期的实际生产经验来看,变化还是有规律的。
天津中小批量PCB厂家