在交流试验电压时,常用的局部放电测量程序如下:(1)样品前处理试验前,样品应按有关规定进行预处理:1、保持被测产品表面清洁干燥,防止绝缘表面受潮或污染造成局部方块。2、如无特殊要求,试验时试样应处于环境温度。3、试验品经过前次的机械、热或电作用后,应在试验前静置一段时间,以减少上述因素对试验结果的影响。(2)检查测试电路本身的局部放电水平先不要连接被测产品,只对测试电路施加电压。如果在略高于被试品的试验电压下不发生局部放电,则试验电路合格;如果局部放电干扰水平超过或接近试验产品比较大允许放电容量值的50%,则必须查明干扰源并采取措施降低干扰水平。(3)测试回路的标定试验回路中的仪表在加压前应进行例行校准,以确定试验产品接入时试验回路的比例系数。该系数受电路特性和测试产品电容的影响。在标定好的电路灵敏度下,观察不接高压电源时或接高压电源后是否有较大的干扰,如有则设法排除。局部放电测试前,是否需要对被测设备进行放电处理?手持式局放监测原理图
三、GZPD-23D系统的构成3.1感知层:由外置UHF局部放电传感器、智能感知单元(内置AE局部放电传感器,内置AE/UHF局部放电信号采集(标配是各2路,可定制单一的AE或UHF)、信号调理(信号的放大、滤波、A/D转换等功能)、传输、电源及GPS授时等模块)构成,负责实时采集GIS局部放电的监测数据,具备实时边缘计算能力。3.2网络层:由工业无线路由器构成。实现多个智能感知单元分布式无线传输模式组网,实时接收智能感知单元采集的监测数据并上传至平台层,支持网络包高速收发。3.3平台层:由操控及监测数据分析软件(下文皆简称“软件”)、操控计算机等构成。具备感知层控制配置、数据接收及智能分析功能,支持脉冲波形、PRPD图谱、局放基本参数等显示,可实现局放类型识别、局放源定位、自动保存等功能。国网局放检测干扰来源连接局部放电测试仪的测试线缆,允许铺设多长距离?
1.2.4耐压试验技术在高压电缆缺陷评价上的不足方面耐压试验只关注高压电缆整体能否承受耐压试验电压的考验,其判断标准为高压电缆是否通过了耐压试验,缺少高压电缆在耐压试验过程中可能出现的局部损伤的评价。举例:高压电缆内部存在局部放电现象,但是高压电缆依然有可能通过耐压试验,内部有缺陷的高压电缆投入运行,则输电可靠性存在较大隐患。因此在高压电缆投运前的交接试验环节的耐压试验过程同步监测局部放电信号是评价其健康态势的重要方式。
有时规定在几个试验电压下测量放电容量,有时规定在某一试验电压下保持一定时间,进行多次测量,以观察局部放电的发展趋势。在测量放电量的同时,还可以测量放电次数、平均放电电流等局部放电参数。1.无预加电压测量试验时,将试样上的电压从较低值逐渐升高到规定值,并保持一定时间后测量局部放电,然后降低电压并切断电源。有时会在电压上升、下降期间或在指定电压下的整个测试期间测量局部放电。2.预加电压测量试验时,电压由较低值逐渐升高,超过规定的局部放电试验电压后,升至预加电压,维持一定时间,再下降至试验电压值,保持指定的时间段,然后在给定的时间间隔测量局部放电。在整个电压施加期间,应注意局部放电量的变化。局部放电测试仪的测试结果与预期相差较大,该如何分析原因?
局部放电产生的检测信号非常微弱,*为微伏级。就价值而言,它很容易被外部干扰信号淹没。因此,有必要考虑抑制干扰信号的影响,并采取有效的抗干扰措施。局部放电测试仪测试中一些干扰的抑制方法如下:(1)电源的干扰可以通过滤波器来抑制。滤波器应能抑制探测器带宽的所有频率,但能通过低频测试电压。(2)通过单独的连接将测试电路连接到适当的接地点,可以消除接地系统的干扰。附近所有接地金属均应良好接地,无电位波动。(3)放电测试线耦合引入的外部干扰源,如高压测试、附近开关操作、无线电发射引起的静电或磁感应和电磁辐射,被误认为是放电脉冲。如果无法移除这些干扰信号源,则应对测试线进行处理,以确保良好的表面光洁度、较大的曲率半径和屏蔽。应屏蔽设计良好的薄金属板、金属板或钢丝。有时样品的金属外壳应该用作屏蔽。如果可能,可以建造一个屏蔽实验室。局部放电控制的重要性是什么?正规局放监测应用
局部放电测试过程中,若仪器发出警报声,该如何处理?手持式局放监测原理图
一旦局部放电开始,绝缘材料就会逐渐劣化,**终可能导致绝缘失效。精心设计和质量材料可防止局部放电。在高压设备中,绝缘的完整性通过在制造过程中和设备使用寿命期间定期使用局部放电检测设备来验证。局部放电预防和检测对于确保高压公用事业设备长期可靠运行至关重要。局部放电等效电路具有腔体的电介质的等效电路可以建模为与另一个电容器并联的电容分压器。分压器的顶部电容**串联电容与腔体的并联,底部电容**间隙电容。并联电容器**不受腔体影响的剩余电容。手持式局放监测原理图