刀片/刀具/(BLADE / CUTTER/ KNIFE)微泰生产和供应用于 MLCC 的各种工业刀具,包括垂直刀片、刀轮刀具、修剪刀片和镜头刀具。 我们拥有制造刀片的自主技术,并拥有使用飞秒激光的切割机边缘校正技术,飞秒激光抛光技术,实现了无比锋利和提高使用寿命。刀锋(刀刃)的无凹痕、无缺陷的边缘。通过自动化检测设备进行管理,并以很高水平的光照度和直度进行管理。应用MLCC切割,相机模块+垂直刀片,刀轮切割器,镜头浇注口修整刀片、透镜切割器。特别是塑料镜头浇注口切割刀片占韩国市场90%以上。激光超精密加工技术领域,全球有多家厂商参与竞争并提供各种不同类型的设备。主要厂商集中在亚洲、德国等。半导体加工超精密超细孔
微泰,精湛的超精密加工技术,可达到微米级加工,充分考虑材料的特殊性加工超平整零件,平整度公差小于 3 um零件精密加工的关键在于确保高水平的精度和质量,并确保与既定尺寸的偏差小实现。 精密加工的半导体晶圆真空卡盘的平面度公差不超过 3 μm,并通过三维接触测量仪进行全数检查和系统质量的管材,为全球客户提供精密加工。 铝(AL5052、AL6061、AL7075)、不锈钢(SUS304、SUS316、SUS630)。 铜、钨、钛和蒙奈尔合金(MONEL)。 处理聚醚醚酮 (PEEK)、聚甲醛 (POM) 和聚酰亚胺 (PI) 等材料,需要精密加工。使用高难度材料,如无氧高导铜 (OFHC)制造半导体精密零件。工业超精密医疗器械零件超精密加工技术能辅助的产业很广,机械、汽车、半导体,只要想提升产品的精致度,就需仰赖精密加工的辅助。
专门从事 K 半导体材料和零件! 微泰,专业制造半导体设备中的精密元件,包括半导体晶圆真空卡盘、半导体孔卡盘和半导体流量计,并在自己的研发技术实验室帮助提高产品质量和技术开发。 积极参与公司和国家研究支持项目,帮助实现零件本地化,并建立了系统的质量控制和检测系统,以及战略性集成的制造基础设施。我们为客户快速提供品质好、有竞争力的产品。与零件和设备制造商建立了有机合作关系,从产品开发的早期阶段开始,通过共同参与缩短了工艺流程,生产出具有高耐用性和高稳定性的产品。美国半导体设备制造业是世界上的半导体市场。 出口到跨国公司,包括排名前位的公司。 从而以优化的成本降低了生产成本,在零件设计、直接加工和装配过程中提高了质量。持续发展客户所需的半导体精密元件的关键技术开发能力,微泰,为客户成功做出贡献。我们将尽极大努力创造新的商业机会。精密制造技术、客户满意的产品和创新的未来价值。
微泰利用先进的飞秒激光螺旋钻孔系统和独有ELID(电解在线砂轮修正技术),飞秒激光抛光技术,生产各种超精密零部件。用于半导体加工真空板 薄膜真空板 倒装芯片工艺真空块 M L C C贴合用真空板 薄膜芯片粘接工具,镜头模组组装治具。超精密刀片特性,材料:碳化钨、氧化锆等。刀刃对称性:低于3um,刀片厚度(t1):100um刀片边缘粗糙度:Ra0.02um ,刀刃厚度(t2):低于0.2um角度(0)精度:±0.3° 刀刃直线度:低于5um。MLCC刀具方面,生产MLCC垂直刀片,MLCC轮刀,MLCC修剪刀片,其特点是1,刀刃锋利。2,与现有产品相比,耐用性提高了50%。材料采用超细碳化钨,具有1,高耐磨性。2,耐碎裂。特别是超薄,超锋利的镜头切割器,光滑无毛边地切割塑料镜片的浇口,占韩国塑料镜头切割刀具90%以上的市场。超精密加工精细的品质,能大幅提升许多高科技工业的设计与技术,进而提升产品的竞争力。
精密激光打孔是激光微加工重要的一方面,其应用范围很广,包括金属钻孔,陶瓷钻孔,半导体材料钻孔,玻璃钻孔,柔性材料钻孔等等,尤其是针对一些坚硬易碎或者弹性较大的材料,如西林瓶打孔、安瓿瓶打孔、输液袋打孔等气密性检测相关,陶瓷,蓝宝石,薄膜等优势尤为明显。目前弘远激光智能科技有限公司能够实现高深径比的精密钻孔,高效密集钻孔,比如安瓿瓶、西林瓶打微米孔,打裂纹,输液袋打微米孔、医用雾化片打孔等等。超精密激光打孔因为其材料特殊,用以往的打孔机械如果掌握不好,打出来的孔会出现扁孔、多边孔等不圆的情况,而且打出来的孔不光滑孔口毛边很大,有的还需要进行二次加工才能使用。而且机械打孔目前不能实现微米级别打孔,随着人们对打孔工艺的要求越来越精细,其传统的机械加工方法已不能满足各种打孔加工速度、质量、深径比等要求。特别是薄铝板的打孔与切割,其要求更是越来越高,而激光打孔可以满足许多加工的特殊要求。超精密激光表面处理的特点是无需使用外加材料,只改变被处理材料表面层的组织结构,被处理件变形很小。超精密陶瓷叠层电容
超精密激光切割的切缝小、变形小、切割面光滑、平整、美观,无须后序处理。半导体加工超精密超细孔
美国是早期研制开发超精密加工技术的国家。早在1962年,美国就开发出以单点金刚石车刀镜面切削铝合金和无氧铜的超精密半球车床,其主轴回转精度为 0.125µm,加工直径为Ø100mm的半球,尺寸精度为±0.6µm,粗糙度为Ra0.025µm。1984年又研制成功大型光学金刚石车床,可加工重1350kg,Ø1625mm的大型零件,工件的圆度和平面度达0.025µm,表面粗糙度为Ra0.042µm。在该机床上采用多项新技术,如多光路激光测量反馈控制,用静电电容测微仪测量工件变形,32位机的CNC系统,用摩擦式驱动进给和热交换器控制温度等。美国利用自己已有的成熟单元技术,只用两周的时间便组装成了一台小型的超精密加工车床(BODTM型),用刀尖半径为5~10nm的单晶金刚石刀具,实现切削厚度为1nm (纳米)的加工。尽管如此,美国还是继续把微米级和纳米级的加工技术作为国家的关键技术之一,这足以说明美国对这一技术的重视。半导体加工超精密超细孔