企业商机
PEDOT企业商机

唐江教授和他的团队提出了一种快速热蒸发(RTE)的方法来获得高质量的CdSe薄膜,并设计了CdSe薄膜太阳能电池。这项题为Rapidthermalevaporationforcadmiumselenidethin-filmsolarcells的研究发表在2021年12月6日的FrontiersofOptoelectronics上。在这项研究中,RTE被用来沉积硒化镉薄膜,这些薄膜表现出高的晶体质量,具有大的晶粒尺寸和优先的晶体方向。同时,720纳米处的尖锐吸收边缘表明CdSe薄膜的直接带隙为1.72eV。强烈的光致发光,半满宽度为23纳米,显示出CdSe薄膜的缺陷相对较少。基于高质量的CdSe薄膜,我们引入了合适的电子传输层(ETL)和空穴传输层(HTL)来构建CdSe太阳能电池。***,通过设计FTO/ZnO/CdS/CdSe/PEDOT/CuI的比较好配置,效率达到了1.88%。这项研究***开发了一种RTE方法来沉积CdSe薄膜,并对其光电性能进行了系统的描述。此外,它还展示了CdSe太阳能电池的设备设计和优化的一般规则。它还指出了CdSe薄膜及其太阳能电池的优点。未来,CdSe太阳能电池在硅基串联应用中具有很大的潜力,这值得进一步研究。请问大家做的PEDOT:PSS的XRD是怎样的?电容器PEDOTOLED

为化学小组提供建议的阿默斯特大学葡萄种植学家ElsaPetit说,传感器纹身可能对葡萄行业特别有用。"她说:"随着气候变化,臭氧将增加,这种新的传感器可能非常有用,可以帮助农民在眼睛可以识别的损害之前采取行动。地面臭氧可以通过早期检测和用木炭或沸石粉处理土壤表面而得到缓解。正如安德鲁解释的那样,她的实验室在美国国家科学基金会的资助下,将他们早先开发的用于医疗传感设备织物的电极气相沉积方法改编为一种新的用途--用于***植物。这种导电聚合物薄膜,即聚(3,4-亚乙基二氧噻吩),PEDOT,只有1微米厚,所以它能让阳光照射进来,而且不会伤害树叶。她补充说,自1970年代发明以来,作为导电电极的非金属碳基聚合物越来越多地被用于软材料设计。电容器PEDOTOLED想知道这个PEDOT能电纺不,我试了很多参数不能电纺成丝。

研究人员使用基于AFM的峰值力定量纳米力学映射(PFQNM)技术来描述有机太阳能电池中空穴传输层的纳米级表面能量分布。他们发现,通过掺入不同侧向尺寸的MoS2纳米片,可以有效地调节聚3,4-亚乙二氧基噻吩:聚苯乙烯磺酸盐(PEDOT:PSS)的表面能量分布,并且可以扩大PEDOT:PSS的异质性分布。表面能的异质性分布(HeD-SE)可以进一步调节活性层的分子分布、晶体取向和相分离。由于HeD-SE对活性层形态的优化,有机太阳能电池的性能和稳定性得到了提高,其比较好功率转换效率(PCE)为18.27%。此外,PCE的增强比例与BHJ中Δγs的增大成正比。

"我们报告了基于全固态串联结构并使用质子作为扩散物种的快速开关电致变色装置,"ZeweiShao和他的同事在他们的论文中写道。"我们使用三氧化钨(WO3)作为电致变色材料,使用聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)作为固态质子源。研究人员在一系列初步测试中评估了他们开发的结构,并发现它取得了非常有希望的结果,但对比度很低(即其开和关的透光率之间有轻微的差异)。为了克服这一限制,他们在PEDOT:PSS层的顶部引入了一个固体聚合物电解质层。该层有效地为PEDOT:PSS提供钠离子,并通过一个被称为离子交换的过程将质子泵入WO3层。"研究人员在他们的论文中解释说:"由此产生的电致变色装置表现出高对比度(在650纳米处超过90%)、快速反应(在0.7秒内着色至90%,在0.9秒内漂白至65%,在7.1秒内漂白至90%)、良好的着色效率(在670纳米处109cm2C-1)和出色的循环稳定性(在3000次循环后对比度下降不到10%)。例如PEDOT:PSS/C60/rGO 和 PEDOT:PSS/CNT/石墨烯。

豆类植物的根部至少在四周内保持导电,根部的电导率约为10S/cm(西门子/厘米)。研究人员调查了使用根部储存能量的可能性,并建立了一个基于根部的超级电容器,其中根部在充电和放电过程中作为电极发挥作用。"EleniStavrinidou说:"基于导电聚合物和纤维素的超级电容器是一种既便宜又可扩展的生态友好型能源储存替代方案。基于根部的超级电容器工作得很好,与之前在植物中使用植物茎部的超级电容器实验相比,可以储存100倍的能量。由于实验中的豆类植物继续存活并茁壮成长,该设备还可以长时间使用。"EleniStavrinidou向我们保证说:"植物发展出更复杂的根系,但在其他方面不受影响:它继续生长并生产豆子。我按照英文文献做的PEDOT一维结构,结果测电镜的时候是颗粒的,在做一维PEDOT的时候的影响是什么?电容器PEDOTOLED

氧化镓溶解到稀硫酸中,然后加入到pedot中制备油墨,油墨干燥后会有发白。加热延长颜色、电阻也没变化。电容器PEDOTOLED

为了获得慢性植入的长期成功,需要一个稳定的、能与脑组织无缝结合的神经元-电极界面。与传统的平面电极相比,用纳米结构材料修饰的神经电极可以为电荷转移和神经元-电极整合提供明显更大的活性表面积。在这项研究中,垂直排列的聚(3,4-亚乙基二氧噻吩)(PEDOT)纳米管阵列已通过模板介导的技术在微电极上直接制造出来。预计PEDOT纳米管阵列可以改善微电极的电性能,促进细胞粘附和生长,并增加神经元的延伸和分支。从我们的研究来看,PEDOT纳米管阵列修饰的微电极已经获得了2个数量级的界面阻抗下降和电荷容量密度增强。使用PC12细胞进行的体外细胞兼容性测试表明,即使没有促进细胞粘附的分子,如胶原蛋白和聚L-赖氨酸(PLL),PEDOT纳米管阵列也支持细胞粘附和生长。当用神经生长因子(NGF)处理时,与PLL涂层的平面基质上的细胞相比,在PEDOT纳米管阵列上培养的细胞数量更多,长度更长。电容器PEDOTOLED

上海欧依有机光电材料有限公司致力于精细化学品,是一家生产型公司。公司业务分为PEDOT/PSS,透明导电油墨等,目前不断进行创新和服务改进,为客户提供良好的产品和服务。公司秉持诚信为本的经营理念,在精细化学品深耕多年,以技术为先导,以自主产品为重点,发挥人才优势,打造精细化学品良好品牌。欧依有机光电材料立足于全国市场,依托强大的研发实力,融合前沿的技术理念,飞快响应客户的变化需求。

PEDOT产品展示
  • 电容器PEDOTOLED,PEDOT
  • 电容器PEDOTOLED,PEDOT
  • 电容器PEDOTOLED,PEDOT
与PEDOT相关的文章
与PEDOT相关的产品
与PEDOT相关的**
与PEDOT相似的推荐
与PEDOT相关的标签
产品推荐 MORE+
新闻推荐 MORE+
信息来源于互联网 本站不为信息真实性负责