MEMS制作工艺-太赫兹超导混频阵列的MEMS体硅集成天线与封装技术:
太赫兹波是天文探测领域的重要波段,太赫兹波探测对提升人类认知宇宙的能力有重要意义。太赫兹超导混频接收机是具有代表性的高灵敏天文探测设备。天线及混频芯片封装是太赫兹接收前端系统的关键组件。当前,太赫兹超导接收机多采用单独的金属喇叭天线和金属封装,很难进行高集成度阵列扩展。大规模太赫兹阵列接收机发展很大程度受到天线及芯片封装技术的制约。课题拟研究基于MEMS体硅工艺技术的适合大规模太赫兹超导接收阵列应用的0.4THz以上频段高性能集成波纹喇叭天线,及该天线与超导混频芯片一体化封装。通过电磁场理论分析、电磁场数值建模与仿真、低温超导实验验证等手段, 磁传感器和MEMS磁传感器有什么区别?MEMS微纳米加工发展趋势
MEMS多重转印工艺与硬质塑料芯片快速成型:针对硬质塑料芯片的快速开发需求,公司**MEMS多重转印工艺。通过紫外光固化胶将硅母模上的微结构(精度±1μm)转印至PMMA、COC等工程塑料,10个工作日内即可完成从设计到成品的全流程交付。以器官芯片为例,该工艺制造的多层PMMA芯片集成血管网络与组织隔室,可模拟肺部的气体交换功能,用于药物毒性测试时,数据重复性较传统方法提升80%。此外,COP材质芯片凭借**蛋白吸附性(<3ng/cm²),成为抗体筛选与蛋白质结晶的**载体。该技术还支持复杂三维结构加工,例如仿生肝小叶芯片中的正弦状微流道,可精细调控细胞剪切力,提升原代肝细胞活性至95%以上。江苏MEMS微纳米加工厂家直销SU8 硅片 / 石英片微流控模具加工技术,支持 6 英寸以下基板单套或套刻的高精度结构复制。
超薄PDMS与光学玻璃的键合工艺优化:超薄PDMS(100μm以上)与光学玻璃的键合技术实现了柔性微流控芯片与高透光基板的集成,适用于荧光显微成像、单细胞观测等场景。键合前,PDMS基板经氧等离子体处理(功率50W,时间20秒)实现表面羟基化,光学玻璃通过UV-Ozone清洗去除有机物污染;然后在洁净环境下对准贴合,施加0.2MPa压力并室温固化2小时,形成不可逆共价键,透光率>95%@400-800nm,键合界面缺陷率<1%。超薄PDMS的柔韧性(弹性模量1-3MPa)可减少玻璃基板的应力集中,耐弯曲半径>10mm,适用于动态培养环境下的细胞观测。在单分子检测芯片中,键合后的玻璃表面可直接进行荧光标记物修饰,背景噪声较传统塑料基板降低60%,检测灵敏度提升至单分子级别。公司开发的自动对准系统,定位精度±2μm,支持4英寸晶圆级批量键合,产能达500片/小时,良率>98%。该工艺解决了软质材料与硬质光学元件的集成难题,为高精度生物检测与医学影像芯片提供了理想的封装方案。
MEMS制作工艺ICP深硅刻蚀:
在半导体制程中,单晶硅与多晶硅的刻蚀通常包括湿法刻蚀和干法刻蚀两种方法各有优劣,各有特点。湿法刻蚀即利用特定的溶液与薄膜间所进行的化学反应来去除薄膜未被光刻胶掩膜覆盖的部分,而达到刻蚀的目的。因为湿法刻蚀是利用化学反应来进行薄膜的去除,而化学反应本身不具方向性,因此湿法刻蚀过程为等向性。
湿法刻蚀过程可分为三个步骤:
1)化学刻蚀液扩散至待刻蚀材料之表面;
2)刻蚀液与待刻蚀材料发生化学反应;
3)反应后之产物从刻蚀材料之表面扩散至溶液中,并随溶液排出。湿法刻蚀之所以在微电子制作过程中被采用乃由于其具有低成本、高可靠性、高产能及优越的刻蚀选择比等优点。
但相对于干法刻蚀,除了无法定义较细的线宽外,湿法刻蚀仍有以下的缺点:1)需花费较高成本的反应溶液及去离子水:2)化学药品处理时人员所遭遇的安全问题:3)光刻胶掩膜附着性问题;4)气泡形成及化学腐蚀液无法完全与晶片表面接触所造成的不完全及不均匀的刻蚀 公司开发的神经电子芯片支持无线充电与通讯,可将电信号转化为脉冲用于神经调控替代。
三维微纳结构的跨尺度加工技术:跨尺度加工技术实现了从纳米级到毫米级结构的一体化制造,满足复杂微流控系统对多尺度功能单元的需求。公司结合电子束光刻(EBL,分辨率10nm)、紫外光刻(分辨率1μm)与机械加工(精度10μm),在单一基板上构建跨3个数量级的微结构。例如,在类***培养芯片中,纳米级表面纹理(粗糙度Ra<50nm)促进细胞黏附,微米级流道(宽度50μm)控制营养物质输送,毫米级进样口(直径1mm)兼容外部管路。加工过程中,通过工艺分层设计,先进行纳米结构制备(如EBL定义细胞外基质蛋白图案),再通过紫外光刻形成中层流道,***机械加工完成宏观接口,各层结构对准误差<±2μm。该技术突破了单一工艺的尺度限制,实现了功能的跨尺度集成,在芯片实验室(Lab-on-a-Chip)中具有重要应用。公司已成功制备包含10nm电极间隙、1μm流道与1mm阀门的复合芯片,用于单分子电信号检测,信号分辨率提升至10fA,为纳米生物技术与微流控工程的交叉融合提供了关键制造能力。MEMS的继电器与开关是什么?现代化MEMS微纳米加工组成
基于MEMS技术的RF射频器件是什么?MEMS微纳米加工发展趋势
在MEMS微纳加工领域,公司通过“材料创新+工艺突破”双轮驱动,为医疗健康、生物传感等场景提供高精度、定制化的微纳器件解决方案。公司依托逾700平米的6英寸MEMS产线,可加工玻璃、硅片、PDMS、硬质塑料等多种基材的微纳结构,覆盖从纳米级(0.5-5μm)到百微米级(10-100μm)的尺度需求。其**技术包括深硅刻蚀、亲疏水改性、多重转印工艺等,能够实现复杂三维微流道、高深宽比微孔阵列及柔性电极的精密成型,满足脑机接口、类***电生理研究、微针给药等前沿医疗应用的严苛要求。MEMS微纳米加工发展趋势