MEMS特点:
1.微型化:MEMS器件体积小、重量轻、耗能低、惯性小、谐振频率高、响应时间短。
2.以硅为主要材料,机械电器性能优良:硅的强度、硬度和杨氏模量与铁相当,密度类似铝,热传导率接近钼和钨。
3.批量生产:用硅微加工工艺在一片硅片上可同时制造成百上千个微型机电装置或完整的MEMS。批量生产可降低生产成本。
4.集成化:可以把不同功能、不同敏感方向或致动方向的多个传感器或执行器集成于一体,或形成微传感器阵列、微执行器阵列,甚至把多种功能的器件集成在一起,形成复杂的微系统。微传感器、微执行器和微电子器件的集成可制造出可靠性、稳定性很高的MEMS。
5.多学科交叉:MEMS涉及电子、机械、材料、制造、信息与自动控制、物理、化学和生物等多种学科,并集约了当今科学技术发展的许多成果。 PVD磁控溅射、PECVD气相沉积、IBE刻蚀、ICP-RIE深刻蚀是构成MEMS技术的必备工艺。定制MEMS微纳米加工的技术服务
MEMS制作工艺柔性电子出现的意义:
柔性电子技术有可能带来一场电子技术进步,引起全世界的很多的关注并得到了迅速发展。美国《科学》杂志将有机电子技术进展列为2000年世界几大科技成果之一,与人类基因组草图、生物克隆技术等重大发现并列。美国科学家艾伦黑格、艾伦·马克迪尔米德和日本科学家白川英树由于他们在导电聚合物领域的开创性工作获得2000年诺贝尔化学奖。
柔性电子技术是行业新兴领域,它的出现不但整合电子电路、电子组件、材料、平面显示、纳米技术等领域技术外,同时横跨半导体、封测、材料、化工、印刷电路板、显示面板等产业,可协助传统产业,如塑料、印刷、化工、金属材料等产业的转型。其在信息、能源、医疗、制造等各个领域的应用重要性日益凸显,已成为世界多国和跨国企业竞相发展的前沿技术。美国、欧盟、英国、日本等相继制定了柔性电子发展战略并投入大量科研经费,旨在未来的柔性电子研究和产业发展中抢占先机。 福建MEMS微纳米加工原料基于 0.35/0.18μm 高压工艺的神经电刺激 SoC 芯片,实现多通道控制与生物相容性优化。
MEMS技术的主要分类:光学方面相关的资料与技术。光学随着信息技术、光通信技术的迅猛发展,MEMS发展的又一领域是与光学相结合,即综合微电子、微机械、光电子技术等基础技术,开发新型光器件,称为微光机电系统(MOEMS)。微光机电系统(MOEMS)能把各种MEMS结构件与微光学器件、光波导器件、半导体激光器件、光电检测器件等完整地集成在一起。形成一种全新的功能系统。MOEMS具有体积小、成本低、可批量生产、可精确驱动和控制等特点。
MEMS具有以下几个基本特点,微型化、智能化、多功能、高集成度和适于大批量生产。MEMS技术的目标是通过系统的微型化、集成化来探索具有新原理、新功能的元件和系统。 MEMS技术是一种典型的多学科交叉的前沿性研究领域,几乎涉及到自然及工程科学的所有领域,如电子技术、机械技术、物理学、化学、生物医学、材料科学、能源科学等。MEMS是一个单独的智能系统,可大批量生产,其系统尺寸在几毫米乃至更小,其内部结构一般在微米甚至纳米量级。例如,常见的MEMS产品尺寸一般都在3mm×3mm×1.5mm,甚至更小。微机电系统在国民经济和更高级别的系统方面将有着广泛的应用前景。主要民用领域是电子、医学、工业、汽车和航空航天系统。台阶仪与 SEM 测量技术确保微纳结构尺寸精度,支撑深硅刻蚀、薄膜沉积等工艺质量管控。
MEMS超表面对特性的调控:
1.超表面meta-surface对偏振的调控:在偏振方面,超表面可实现偏振转换、旋光、矢量光束产生等功能。
2.超表面meta-surface对振幅的调控。超表面可以实现光的非对称透过、消反射、增透射、磁镜、类EIT效应等。
3.超表面meta-surface对频率的调控。超表面的微结构在共振情况下可实现较强的局域场增强,利用这些局域场增大效应,可以实现非线性信号或荧光信号的增强。在可见光波段,不同频率的光对应不同的颜色,超表面的频率选择特性可以用于实现结构色。
我们在自然界中看到的颜色从产生原理上可以分为两大类,一类是由材料的反射、吸收、散射等特性决定的颜色,比如常见的颜料、塑料袋的颜色等;另一类是由物质的结构,而不是其所用材料来决定的颜色,即所谓的结构色,比如蝴蝶的颜色、某些鱼类的颜色等。人们利用超表面,可以通过改变其结构单元的尺寸、形状等几何参数来实现对超表面的颜色的自由调控,可用于高像素成像、可视化生物传感Bio-sensor等领域。 高压 SOI 工艺实现芯片内高压驱动与低压控制集成,耐压超 200V 并降低寄生电容 40%。广西MEMS微纳米加工材料
MEMS技术常用工艺技术组合有:紫外光刻、电子束光刻EBL、PVD磁控溅射、IBE刻蚀、ICP-RIE深刻蚀。定制MEMS微纳米加工的技术服务
微纳结构的台阶仪与SEM测量技术:台阶仪与扫描电子显微镜(SEM)是微纳加工中关键的计量手段,确保结构尺寸与表面形貌符合设计要求。台阶仪采用触针式或光学式测量,可精确获取0.1nm-500μm高度范围内的轮廓信息,分辨率达0.1nm,适用于薄膜厚度、刻蚀深度、台阶高度的测量。例如,在深硅刻蚀工艺中,通过台阶仪监测刻蚀深度(精度±1%),确保流道深度均匀性<2%。SEM则用于纳米级结构观测,配备二次电子探测器,可实现5nm分辨率的表面形貌成像,用于微流道侧壁粗糙度(Ra<50nm)、微孔孔径(误差<±5nm)的检测。在PDMS模具复制过程中,SEM检测模具结构的完整性,避免因缺陷导致的芯片流道堵塞。公司建立了标准化测量流程,针对不同材料与结构选择合适的测量方法,如柔性PDMS芯片采用光学台阶仪非接触测量,硬质芯片结合SEM与台阶仪进行三维尺寸分析。通过大数据统计过程控制(SPC),将关键尺寸的CPK值提升至1.67以上,确保加工精度满足需求,为客户提供可追溯的质量保障。定制MEMS微纳米加工的技术服务