量子级联激光器输出功率较高图3量子级联激光器有源区工作示意图(两个周期)比起中红外波段其它光源,QCL的输出功率较高。不同的激光气体检测应用中会需要不同的功率,故激光器的高功率工作是非常必要的。改变工作电流就可以改变激光器的输出功率,高功率的激光器能够提供的功率范围大,可以满足更多的应用...
常见的温室气体光谱学检测技术主要包括非分散红外光谱技术(NDIR)、傅立叶变换光谱技术(FTIR)、差分光学吸收光谱技术(DOAS)、差分吸收激光雷达技术(DIAL)、可调谐半导体激光吸收光谱技术(TDLAS)、离轴积分腔输出光谱技术(OA-ICOS)、光腔衰荡光谱技术(CRDS)、激光外差光谱技术(LHS)、空间外差光谱技术(SHS)等。其中,NDIR技术利用气体分子对宽带红外光的吸收光谱强度与浓度成正比的关系,进行温室气体反演,具有结构简单、操作方便、成本低廉等优点,但仪器的光谱分辨率和检测灵敏度较低。FTIR技术通过测量红外光的干涉图,并对干涉图进行傅立叶积分变换,从而获得被测气体红外吸收光谱,能够实现多种组分同时监测,适用于温室气体的本底、廓线和时空变化测量及其同位素探测,仪器系统较为复杂,价格比较昂贵。DOAS也是一种宽带光谱检测技术,能够实现多气体组分探测,仪器光谱分辨率较低,易受水汽和气溶胶的影响。DIAL技术是一种利用气体分子后向散射效应对气体遥感探测的光谱技术,具有高精度、远距离、高空间分辨等优点,系统较为复杂,成本较高。TDLAS技术利用窄线宽的可调谐激光光源,完整地扫描到气体分子的一条或几条吸收谱线。在大气污染监控中,QCL能够准确检测大气中的微量成分,为环境保护提供有力支持。内蒙古气体检测QCL激光器
中红外温室气体激光器正是顺应这一市场趋势,融合了先进的激光技术和智能化设计,提供高性能的气体检测解决方案。我们产品在灵敏度、稳定性和数据处理能力等方面具有明显优势,能够为客户提供精确可靠的监测数据。这不仅帮助客户更好地应对和管理温室气体排放,还为其在环保方面的决策提供了重要依据。通过高效的数据分析和处理,我们的设备能够实时反馈监测结果,助力企业和**快速响应环境变化。展望未来,随着全球对气候变化和环保政策的重视不断加深,中红外温室气体激光器的市场需求将持续增长。尤其是在国际社会共同应对气候变化的背景下,各国在温室气体排放监测方面的需求愈发迫切。我们的产品不仅在技术上保持**地位,更在市场价值和应用范围上展现出广阔的前景。我们始终致力于为客户提供高效、可靠的温室气体检测方案,助力全球环境保护事业的发展。总而言之,中红外温室气体激光器的未来充满机遇,随着市场对环境保护的重视程度不断加深,相关技术也将不断创新和升级。我们期待与客户共同携手,推动中红外温室气体激光器在各个领域的广泛应用,为实现可持续发展的美好未来贡献力量。通过技术的进步与合作的加深。 山西H2OQCL激光器报价提供从QCL光源、MCT探测器等模块组件,再到激光气体分析系统的全套解决方案。
阈值电流密度较低带间跃迁和子带间跃迁示意图常规半导体激光器是双极性器件,导带中的电子与价带中的空穴复合生成光子,而量子级联激光器是单极性器件,只靠导带中子带间电子的跃迁产生光子,如图4所示,电子跃迁的始态与终态的曲线的曲率相同,这样形成的增益谱很窄而且对称,是量子级联激光器能够低阈值工作的一个原因。当然,QCL的阈值电流密度也与有源区设计,材料生长以及器件结构有关。尺寸较小图5量子级联激光器实物图量子级联激光器的尺寸较小,如图5所示,量子级联激光器管芯的长度一般为3mm,随着激光器性能提高,可以将其封装在方盒内,从而方便地移动和操作。量子级联激光器的工作温度、输出性能和波长覆盖范围在过去的20年取得了迅猛发展。其中,有两个里程碑,一个是1997年室温工作的分布反馈量子级联激光器(DFB-QCL)的研制成功,实现了波长为μm和8μm的DFB-QCL的室温工作,其中μm的激光器300K时峰值功率为60mW;另一个是2002年实现了波长为μm量子级联激光器的室温连续工作,器件在292K时输出功率为17mW,比较高连续工作温度为321K。
红外光谱检测方法主要有使用宽带光源的傅里叶变换红外光谱(FTIR)和非分散红外光谱(NDIR)技术,以及红外激光光谱技术。与使用宽带光源的FTIR和NDIR相比,红外激光光谱由于采用高单色性的红外激光作为光源,具有更高的光谱分辨率,不需要使用额外的分光部件,易于实现仪器的小型化。另外,高功率密度激光光源更方便实现长光程检测。红外激光光谱学依据波段分为近红外光谱和中红外光谱。近红外波段工作在-μm的近红外区,相应于某些分子的“泛频”谱带。分子在这些谱带的吸收系数比中红外的基频吸收要弱得多,一般要低2-3数量级。尽管如此,由III-V族化合物制成的半导体激光由于在通信和电子工业元件方面的广泛应用,其价格相对便宜,质量、性能和输出功率都相当优越,且在接近室温工作,使其在一些浓度较高或对灵敏度要求较低的污染源排放的气体监测中得到了很好的应用,足以达到ppm的检测水平,甚至到达ppb的水平,接近中红外光谱系统检测灵敏度的1-10%。 QCL会被集成到光谱仪中,完成红外光谱检测。QCL被认为是中远红外范围内气体检测的优势光源。
量子级联激光器(QuantumCascadeLaser)是一种能够发射光谱在中红外和远红外频段激光的半导体激光器。它是由贝尔实验室于1994年率先实现。随着量子级联激光器技术的日趋成熟,它开始被较多地应用于科学和工程研究。由于其明显优势,在气体检测领域得到了迅速推广。基于量子级联激光器的红外光谱气体检测技术具有灵敏度高、检测速度快等优点,特别是在高精度光谱检测方面所具有的明显优势,使其成为研究和应用的热点。量子级联激光器(QuantumcascadeLaser,QCL)是基于半导体耦合量子阱子带(一般为导带)间的电子跃迁所产生的一种单极性光源。量子(quantum)指的是通过调整有源区量子阱的厚度可以改变子带的能级间距,实现对波长的“裁剪”,另外也指器件的尺寸较小。级联(cascade)的意思是有源区中上一组成部分的输出是下一部分的输入,一级接一级串联在一起。激光器(Laser)是指产生特定波长的光源。量子级联激光器的波长可以覆盖在、通信、气体检测等领域极具应用价值的中远红外波段。 中红外QCL-TDLAS激光气体检测技术有 ppb 级超高灵敏度、超大检测范围、高选择性、实用性强,易于维护等优势。新型QCL激光器
甲烷分子的基频吸收带位于在3.3μm附近的中红外区域。因此用中红外激光器探测甲烷气体非常有益。内蒙古气体检测QCL激光器
量子级联激光理论的创立和量子级联激光器的发明使中远红外波段高可靠、高功率和高特征温度半导体激光器的实现成为可能。一般而言,量子级联激光器系统包括量子级联激光模块,控制模块以及接口模块。量子级联激光器从结构上来说,可以分为分布反馈(DistributedFeedback)QCL,F-P(Fabry-Perot)QCL和外腔(ExternalCavity)QCL。量子级联激光器由于其独特的设计原理使其具有如下的独特优势:1:可以提供超宽的光谱范围(midIRtoTHz)。2:极好的波长可调谐性。3:很高的输出功率,同时也可以工作在室温环境下。目前国际上已研制出~19μm中远红外量子级联激光器系统。随着技术的进步,目前量子级联激光器不但能以脉冲的方式工作,而且可以在连续工作的方式输出大功率激光。激光模块将QC激光器装进一个气密性封装内,比较大限度的保护了激光器的性能和寿命。 内蒙古气体检测QCL激光器
量子级联激光器输出功率较高图3量子级联激光器有源区工作示意图(两个周期)比起中红外波段其它光源,QCL的输出功率较高。不同的激光气体检测应用中会需要不同的功率,故激光器的高功率工作是非常必要的。改变工作电流就可以改变激光器的输出功率,高功率的激光器能够提供的功率范围大,可以满足更多的应用...
贵州氧化亚氮QCL激光器价格
2025-04-18安徽国产QCL激光器报价
2025-04-18广西制造QCL激光器定制
2025-04-18甲烷QCL激光器
2025-04-18湖北二氧化碳QCL激光器哪家好
2025-04-17宁夏半导体气体池型号
2025-04-17天津标准QCL激光器多少钱
2025-04-17重庆N2OQCL激光器
2025-04-17福建标准气体池工厂
2025-04-17