DLC涂层在模具上的运用:①冲压成形模具:凸模、凹模、精细冲裁、压印成形零件等。②注塑成形模具:模腔和型芯、顶杆及各类镶件等。③半导体模具:引脚成形模具的刀口件、封装模具的成形镶件和镶块等。④其他零部件:轴类、齿轮、轴承、凸轮和从动滚轮等。DLC涂层具有高硬度、表面平滑、低磨擦系数、易脱模、耐磨耗、耐酸碱、热导性佳及低温制程等特性。材料的高压冲刷与颗粒很难对其形成损伤,因此远比其它材料更适合运用在模具的维护上,大幅度地增加模具运用寿命。DLC涂层的硬度可达到3000-5000HV,比普通钢材高出数倍,甚至是金刚石的硬度的一半。佛山PVDDLC涂层加工
DLC类金刚石涂层加工是一种在微观结构上含有金刚石成分的涂层。DLC的主要构成元素是碳,由于碳原子之间不同的结合方式,从而产生出不同的物质,比如:石墨是碳以sp2键的形式结合;金刚石是碳以sp3键的形式结合;DLC类金刚石是碳以sp3和sp2健的形式结合;其涂层结构是由碳的sp3和sp2形态混合而成的无定型组织,形成的膜层结构中sp3和sp2各自所占的百分比直接影响涂层性能的好坏,如果sp3所占的比率越高,膜层性能就越接近天然金刚石,如果sp3所占的比率越高,膜层性能就越接近天然金刚石,显微硬度就会越高;sp2所占的比率越高,膜层的自润滑性能就越好,摩擦因数越小,但是显微硬度会降低,其与金属之间的摩擦因数的范围通常是0.05~0.2左右,通过设定生产流程中的工艺参数和选择不同的靶材,可以控制成形膜层的属性来满足不同场合的需求。中山类金刚石DLC涂层是什么DLC涂层是指针对工业产品表面进行的一种化学气相沉积涂层。
中山DLC类金刚石涂层工艺流程。1、工件基体处理。这一步是比较重要的,将工件抛光到小于Ra0.2um,涂覆处理后的工件才可得到满意的表面质量,这对成形一些具有光学性能要求的零件是非常重要的,类似成形光学镜头和成形LED零件等。操作的时候需要注意基体表面处理不能留有死角,这影响到膜层是否能与基体牢固地结合。2、充分清洗。将要涂覆的工件进行充分清洗,涂覆的母材、质量水平和几何形状决定了清洗的工艺。工件装在设定的夹具上,夹具是在使腔体装载尺寸优化和保证涂覆均匀的基础上设计的。清洗方法为真空室抽真空至10-6托(高真空)来排除系统中的任何污染物,真空室中通入惰性气体并使其离子化,导致产生辉光放电(等离子体),这是气体清洗阶段使零件做好金属沉淀准备。3、金属沉淀。在用于沉淀的固体金属上(指靶材)加载高电流、低电压电弧,金属被蒸发并且瞬间离子化,属离子在高能量的作用下通过惰性气体或活性气体进入腔体并沉淀在工件上。在金属沉淀过程中蒸发了的金属(靶材)保持不变。在J活的沉淀过程中,改变气体的体积或种类将会改变膜层的性质,形成像碳化物、氮化物或氧化物的陶瓷。同样,通过改变靶材的材质也可以产生不同的膜层。
什么是中山DLC涂层生长机理?DLC涂层可分为无氢类金刚石碳膜(a-C)和氢化类金刚石碳膜(a-C:H)两大类。这两类DLC涂层的生长机理略有不同。什么是DLC涂层生长机理?1、含氢DLC涂层的生长机理对于含氢的DLC涂层,与CVD金刚石涂层一样,一般认为碳与碳、碳与氢原子进行杂化,形成坚固的四面体结构,氢原子的存在促进形成SP3键,而刻蚀掉已经形成的SP2键;在无序的网络结构中,氢原子能够终止碳原子至外端的悬挂键,阻止碳原子形成SP2键。由于氢原子的存在可以帮助和促进SP3键的形成,因此人们认为氢的存在是DLC涂层中形成SP3键所必需的,而且还建立了SP3与氢含量的关系。研究表明,随着环境中氢原子含量的增加,涂层中SP3键含量增加,而且还发现氢含量为50%附近时硬度至大。含氢类金刚石涂层的生长模型分为三个阶段,即等离子体的反应(气体的分子或原子分解、电离);等离子体与表面作用以及涂层浅表面的作用。2、无氢DLC涂层的生长机理由于氢原子在一定含量范围内可以促进涂层中SP3键的形成,很多研究者利用加氢技术来提高层中SP3的含量,但在随后的应用中发现事实并非如此。利晟纳米DLC涂层的制备方法。
这里利晟纳米小编为大家简单说明一下DLC类金刚石涂层性能应用的大体情况吧。3、固体润滑由于DLC膜具有较低的摩擦系数,可以较好地使用在高温、高真空等不适于液体润滑的情况,以及没有清洁要求的环境中。这种性能满足航天及航空材料的要求。4、磁性保护DLC膜还可以作为磁介质保护膜。将磁盘、磁头或磁带表面涂覆很薄的类金刚石膜后,不仅可以减小摩擦磨损和防止机械划伤,提高磁记录介质的使用寿命;而且由于DLC膜具有良好的化学惰性,抗氧化性提高,稳定性增强。DLC涂层具有突出的防腐蚀和抗粘属性,磨损保护和摩擦性能明显,对机械工程、塑料加工和半导体行业尤其重要。东莞五金件低温DLC涂层
DLC涂层可以使材料表面硬度提高到20-90 GPa之间,可以扩展材料应用领域。佛山PVDDLC涂层加工
中山DLC涂层是在电离和分解的碳或烃类物质以通常为10-300eV的能量降落在基底表面时形成的。DLC膜具有优异的机械(高硬度)、光学(高光学带隙)、电学(高电阻率)、化学(惰性)和摩擦学(低摩擦和磨损系数)性能,并可在低衬底温度(~200°C)下沉积。DLC薄膜通常是非晶的(即没有占主导地位的晶格结构),由sp2(石墨)和sp3(金刚石)相的混合物组成。膜性能的控制强烈地依赖于所选择的沉积技术(PVD溅射或蒸发和Pa-CVD)的通量特性、膜内的金属和氢含量、sp2:sp3比、衬底偏置电压、离子能量和离子密度以及衬底温度。DLC膜对钢的摩擦系数一般在0.05-0.20之间,而膜硬度和sp3含量可以根据具体应用而定制。佛山PVDDLC涂层加工