微波功率放大器(RF PA)主要分为真空和固态两种形式。基于真空器件的功率放大器(RF PA),曾在装备的发展史上扮演过重要角色,而且由于其功率与效率的优势,现在仍广泛应用于雷达、通信、电子对抗等领域。后随着晶体管的问世,固态器件开始在低频段替代真空管,尤其是随着GaN,SiC等新材料的应用,固态器件的竞争力已大幅提高。跟固态器件相比,真空器件的主要优点是工作频率高、频带宽、功率大、效率高,主要缺点是体积和质量均较大。真空器件主要包括行波管、磁控管和速调管,它们具有各自的优势,应用于不同的领域。其中,行波管主要优势为频带宽,速调管主要优势为功率大,磁控管主要优势为效率高。射频功率放大器(RF PA)是发射系统中的主要部分。重庆乙类功率放大器批发厂
射频PA的线性化技术:射频功率放大器RF PA的非线性失真会使其产生新的频率分量,如对于二阶失真会产生二次谐波和双音拍频,对于三阶失真会产生三次谐波和多音拍频。这些新的频率分量如落在通带内,将会对发射的信号造成直接干扰,如果落在通带外将会干扰其他频道的信号。为此要对射频功率放大器RF PA的进行线性化处理,这样能够较好地解决信号的频谱再生问题。 射频功放基本线性化技术的原理与方法不外乎是以输入RF信号包络的振幅和相位作为参考,与输出信号比较,进而产生适当的校正。成都电磁兼容功放批发厂射频功率放大器是对输出功率、激励电平、效率、功耗、失真、尺寸和重量等问题作综合考虑的电子电路。
射频功率放大器RF PA预失真技术分为RF预失真和数字基带预失真两种基本类型。RF预失真一般采用模拟电路来实现,具有电路成本低、结构简单、易于高频、宽带应用等优点,缺点是频谱再生分量改善较少、高阶频谱分量抵消较困难。 数字基带预失真由于工作频率低,可以用数字电路实现,适应性强,而且可以通过增加采样频率和增大量化阶数的办法来抵消高阶互调失真,是一种很有发展前途的方法。这种预失真器由一个矢量增益调节器组成,根据查找表(LUT)的内容来控制输入信号的幅度和相位,预失真的大小由查找表的输入来控制。矢量增益调节器一旦被优化,将提供一个与功放相反的非线性特性。理想情况下,这时输出的互调产物应该与双音信号通过功放的输出幅度相等而相位相反,即自适应调节模块就是要调节查找表的输入,从而使输入信号与功放输出信号的差别较小。
射频功率放大器的输出功率是怎样的?功率放大器的功率指标严格来讲又有标称输出功率和较大瞬间输出功率之分。前者就是额定输出功率,它可以解释为谐波失真在标准范围内变化、能长时间安全工作时输出功率的较大值;后者是指功率放大器的“峰值”输出功率,它解释为功率放大器接受电信号输入时,在保证信号不受损坏的前提下瞬间所能承受的输出功率较大值。射频功率放大器的传输增益是指放大器输出功率和输入功率的比值,单位常用“dB”(分贝)来表示。功率放大器的输出增益随输入信号频率的变化而提升或衰减。这项指标是考核功率放大器品质优劣的较为重要的一项依据。该分贝值越小,说明功率放大器的频率响应曲线越平坦,失真越小,信号的还原度和再现能力越强。功率放大器(RF PA)的信噪比数值越大就证明声音越干净。
确保射频功率放大器稳定的实现方式是什么呢?每一个晶体管都是潜在不稳定的。好的稳定电路能够和晶体管融合在一起,形成一种“可持续工作”的特殊模式。稳定电路的实现方式可划分为两种:窄带的和宽带的。窄带的稳定电路是进行一定的增益消耗。这种稳定电路是通过增加一定的消耗电路和选择性电路实现的。这种电路使得晶体管只能在很小的一个频率范围内贡献。另外一种宽带的稳定是引入负反馈。这种电路可以在一个很宽的范围内工作。不稳定的根源是正反馈,窄带稳定思路是遏制一部分正反馈,当然,这也同时抑制了贡献。而负反馈做得好,还有产生很多额外的令人欣喜的优点。对功放电路的了解,主要从输出功率、效率和失真这三方面考虑。武汉射频功率放大器批发厂
功率放大器的功率指标严格来讲有标称输出功率和较大瞬间输出功率之分。重庆乙类功率放大器批发厂
当输入信号增加到一定程度后,功放会由于工作到了非线性区产生一系列谐波。对于大功率放大器(RF PA)系统中,一般需要用滤波器将谐波降到60dBc以下。输入或输出驻波比表明功放和整个系统的匹配程度。输入、输出比变坏会导致系统的增益起伏和群时延变坏。但是高驻波比的功放是比较难以设计的,一般的系统中,都会需要要求功放的输入驻波比低于2:1。功率放大器(RF PA)交调失真是指具有不同频率的两个或者更多的输入信号通过功率放大器(RF PA)而产生的混合分量。这是由于功放的非线性特质造成的。重庆乙类功率放大器批发厂