WPI 小动物多通道生理信号记录仪:***监测生理信号WPI 小动物多通道生理信号记录仪具备强大的功能,能够同时记录多种小动物的多项生理信号,为***了解小动物生理状态提供了有力支持。该记录仪可同步监测心电、脑电、肌电、呼吸等重要生理信号,且具有高灵敏度和高精度的信号采集能力,能够精细捕捉到信号的细微变化。在神经生理学和心血管生理学等多学科交叉研究中,其优势尤为明显。例如,在研究压力应激对小动物生理状态的影响时,记录仪可同时记录心电、脑电和呼吸信号。通过综合分析这些信号在应激状态下的同步变化,科研人员能够深入了解小动物心血管系统、神经系统和呼吸系统的协同反应,为揭示应激相关疾病的发病机制提供***、系统的生理数据,推动多学科研究的融合与发展 。液氮罐低温保存动物细胞、组织等样本。广东大鼠模式动物系统销售
WPI超微量显微操作泵:斑马鱼幼鱼研究的利器WPI超微量显微操作泵在斑马鱼幼鱼研究中展现出独特优势。与IO-KIT或RPE-KIT等结合,可将其转换为玻璃毛细管注射针头,用于斑马鱼幼鱼体内药物或荧光物质的注射。科研人员利用这一特性,能够深入研究药物在斑马鱼幼鱼体内的代谢途径和作用机制。例如,将带有荧光标记的药物注射到斑马鱼幼鱼体内,通过观察荧光信号的分布和变化,追踪药物在幼鱼体内的吸收、分布、排泄过程。在发育生物学研究方面,注射特定的信号分子或基因编辑工具,探究其对斑马鱼幼鱼***发育和形态建成的影响,为解析脊椎动物早期发育机制提供重要线索。其超安静功能避免干扰动物行为观察和生理信号监测,高精度注射能力确保每次实验注射剂量一致。WPI超微量显微操作泵为斑马鱼作为模式生物在科研领域的广泛应用提供了有力保障。天津果蝇模式动物仪器厂家解剖显微镜辅助精细解剖模式动物组织。
WPI 自动活细胞成像系统:见证细胞生命历程WPI 自动活细胞成像系统为科研人员观察模式动物细胞的生命活动提供了直观、动态的视角。该系统能够实时记录细胞的生长、分裂、分化等关键过程,宛如为细胞生命历程拍摄一部生动的 “纪录片”。在小鼠胚胎发育研究中,研究人员将胚胎放置于成像系统的观察区域,系统便可持续追踪胚胎细胞从初始状态逐渐分化形成各种组织和***的全过程。通过清晰记录细胞形态变化、迁移轨迹以及细胞间相互作用等细节,科研人员深入探究胚胎发育的分子机制和调控网络。在研究肿瘤细胞在小动物体内的生长和转移机制时,自动活细胞成像系统同样大显身手。它可以标记肿瘤细胞,实时观察肿瘤细胞如何突破基底膜、侵入周围组织并**终发生远处转移,为攻克**难题提供关键信息,让科研人员对细胞生命活动的认识达到新的深度 。
WPI多通道记录仪评估肥胖小鼠呼吸功能在肥胖相关呼吸疾病研究中,WPI多通道生理记录仪实现了呼吸功能的多参数监测。通过植入式压力传感器,可同步获取肥胖小鼠的潮气量、呼吸频率及气道阻力等指标。与正常小鼠相比,高脂饮食组潮气量降低18%,而气道阻力升高25%,且出现明显的间歇性低氧事件。结合膈肌肌电记录,研究人员发现肥胖小鼠的膈肌放电频率在低氧时增加30%,但放电幅度下降20%,提示膈肌疲劳。当给予瘦素干预后,记录仪显示潮气量改善22%,且膈肌电活动恢复正常。这种呼吸力学与肌电活动的同步监测,为肥胖低通气综合征的病理机制研究和药物评估提供了综合解决方案。恒温培养箱维持动物细胞适宜生长温度。
WPI跨膜电阻仪WPI跨膜电阻仪是研究小动物肠屏障功能的关键仪器。其工作原理是通过测量肠上皮细胞单层的跨膜电阻值,来评估肠屏障的完整性。在大鼠肠道炎症模型研究中,科研人员将电极探头精细贴合肠组织表面,仪器便能获取稳定的电阻数据。通过对比正常组与炎症组大鼠肠上皮细胞的跨膜电阻变化,可深入探究炎症因子对肠屏障功能的影响机制,以及评估药物对肠屏障修复的效果,为肠道疾病的防治研究提供重要的理论依据,有助于开发新的肠道疾病治疗方法和药物。组织研磨仪高效研磨动物组织样本。广东大鼠模式动物
细胞分选仪分离模式动物特定细胞群。广东大鼠模式动物系统销售
发育生物学研究领域对于发育生物学研究,WPI 的超微量显微操作泵是不可或缺的工具。在斑马鱼胚胎发育研究中,该泵可精确控制微量液体的注射,将各种生物活性物质,如基因编辑试剂、信号通路抑制剂或标记物等,注射到斑马鱼胚胎的特定细胞或组织中。通过这种精细操作,科研人员能够研究这些物质对胚胎发育过程中细胞分化、组织***形成的影响。例如,将荧光标记的 mRNA 注射到斑马鱼胚胎的特定细胞,观察该细胞在胚胎发育过程中的命运和分化轨迹,从而深入了解胚胎发育的分子机制和细胞生物学过程。另外,WPI 的高分辨率显微镜系统为观察斑马鱼胚胎发育的形态学变化提供了清晰的图像,其具备的活细胞成像功能,能够实时记录胚胎发育过程中细胞的迁移、增殖和分化等动态过程,助力科研人员***、直观地解析胚胎发育的奥秘 。广东大鼠模式动物系统销售