双光子显微镜基本参数
  • 品牌
  • bruker
  • 型号
  • 齐全
  • 可售卖地
  • 全国
  • 配送方式
  • 空运
双光子显微镜企业商机

从双光子的原理和特点,我们可以清楚地得出双光子的优点:☆光损伤小:由于双光子显微镜采用可见光或近红外光作为激发光源,因此该波段的光对细胞和组织的光损伤很小,适合长期研究;☆穿透能力强:与紫外光相比,可见光和近红外光的穿透能力更强,因此受生物组织散射的影响更小,解决了生物组织深层物质的层析成像问题;☆高分辨率:由于双光子吸收的截面很小,只能在焦平面很小的区域激发荧光,双光子吸收被限制在焦点处体积约为波长三次方的范围内;☆漂白区域小:由于激发只存在于交点处,焦点外的区域不会发生光漂白;☆荧光收集率高:与共焦成像相比,双光子成像不需要滤光片(共焦),提高了荧光收集率,直接导致图像对比度的提高;☆图像对比度高:由于荧光波长小于入射波长,瑞利散射产生的背景噪声*为单光子激发产生的1/16,减少了散射的干扰;光子跃迁具有很强的选择性激发,因此可以用来对生物组织中的一些特殊物质进行成像;双光子显微镜能够在细胞甚至是亚细胞水平上对神经细胞的形态结构、离子浓度、细胞运动、进行直接成像监测。进口激光荧光双光子显微镜光毒性

进口激光荧光双光子显微镜光毒性,双光子显微镜

基因编码的荧光探针可用于在突触和细胞分辨率下监测体内神经元信号,这是揭示动物神经活动复杂机制的关键。双光子显微镜(2PM)可以对钙离子传感器和谷氨酸传感器进行亚细胞分辨率的成像,从而测量不透明脑深部的活动。成像膜的电压变化可以直接反映神经元的活动,但神经元活动的速度对于常规的2PM来说太快了。目前,电压成像主要由宽视场显微镜实现,但其空间分辨率较差,且只能在浅深度成像。因此,为了以高空间分辨率成像不透明脑中膜电压的变化,需要将成像速率提高2PM。面向模块输出端的子脉冲序列可视为从虚拟光源阵列发出的光,这些子脉冲在中继到显微镜物镜后形成空间分离和时间延迟的聚焦阵列。然后,该模块被集成到一个带有高速数据采集系统的标准双光子荧光显微镜中,如图2所示。光源是重复频率为1MHz的920nm激光器。FACED模块可以产生80个脉冲焦点,脉冲时间间隔为2ns。这些焦点是虚拟源的图像。虚光源越远,物镜处的光束尺寸越大,焦点越小。光束可以沿Y轴比沿X轴更好地填充物镜,从而在X轴上产生0.82m和0.35m的横向分辨率。国内bruker双光子显微镜成像原理是什么双光子显微镜型号有哪些?

进口激光荧光双光子显微镜光毒性,双光子显微镜

实验从理论和实验上评估了多焦点v2PE显微镜的空间分辨率,并与单光子荧光显微镜进行了对比,实验中v2PE的激发波长为521nm,使用放大倍率为100倍的物镜,尺寸为0.6AU,对直径100nm的荧光颗粒进行了测试性成像,共获得40幅不同采样深度的图像合成为三维图像。图像在横向和纵向的半高全宽分别是177nm和297nm,这些值接近显微镜的理论分辨率。后续还利用软件模拟从理论上研究了多焦点v2PE显微技术的空间分辨率,模拟计算显示v2PE点扩散函数(PSF)的横向半高宽与单光子激发荧光(1PE)相似,轴向的半高宽较1PE减少,可以提高空间分辨率。

刚好双光子在这两点具有很大的优势在实际操作中成像的深度和样品的关系很大,双光子成像利用高亮度的荧光标记材料,已经有做到mm级别的穿透深度HighqualitycellularTPimagingwithhighsignal-to-backgroundratio(>100)andtissueimagingwithapenetrationdepthof2200μmhavebeenachievedwithP-QDasprobe.ExtremelyHighBrightnessfromPolymer-EncapsulatedQuantumDotsforTwo-photonCellularandDeep-tissueImaging:ScientificReports:NaturePublishingGroup双光子显微镜的原理是什么?

进口激光荧光双光子显微镜光毒性,双光子显微镜

指示剂是如何负载细胞,目前有三种在神经元上填充钙离子指示剂的方法,且都可以用于体内和体外研究。第一种方法是利用玻璃吸管将膜渗透性盐或葡聚糖形式的指示剂注入单个神经元中。此方法方便实验者控制单个神经元内的钙离子指示剂浓度且信噪比较高。第二种是利用“批量加载”的方法将钙离子指示剂染料负载神经元,观察对象为一群神经元。尽管此方法可能导致一些胶质细胞也被指示剂所标记,但明显提高了整体神经元的标记百分比,使研究者得以观察到一群神经元内动作电位相关性的活动。第三种也较为常用,通过病毒转染的方式使其基因编码钙离子指示剂。(A)单细胞注射法;(B)networkloading法;(C)通过病毒转染使其基因编码钙离子指示剂(expressionofgeneticallyencodedcalciumindicators,GECI)双光子显微镜还可以对一些具有特性的染料细胞进行实验,还有一些短波长可以利用双光子特性进行特定实验。国外bruker双光子显微镜成像技术

双光子显微镜有哪些应用呢?进口激光荧光双光子显微镜光毒性

双光子之源:飞秒激光双光子吸收理论早在1931年就由诺奖得主MariaGoeppertMayer提出,30年后因为有了激光才得到实验验证,但是到WinfriedDenk发明双光子显微镜又用了将近30年。要理解双光子的技术挑战和飞秒激光发挥的重要作用,首先要了解其中的非线性过程。双光子吸收相当于和频产生非线性过程,这要求极高的电场强度,而电场取决于聚焦光斑大小和激光脉宽。聚焦光斑越小,脉宽越窄,双光子吸收效率越高。对于衍射极限显微镜,聚焦在样品上的光斑大小只和物镜NA和激光波长有关,所以关键变量只剩下激光脉宽。基于以上分析,能够以高重频(100MHz)输出超短脉冲(100fs量级)的飞秒激光器成了双光子显微镜的标准激发光源。这也再次说明双光子显微镜的优势:只有焦平面处才能形成双光子吸收,而焦平面之外由于光强低无法被激发,所以双光子成像更清晰。进口激光荧光双光子显微镜光毒性

与双光子显微镜相关的**
信息来源于互联网 本站不为信息真实性负责