多光子显微镜基本参数
  • 品牌
  • Bruker,布鲁克
  • 型号
  • 型号齐全
  • 类型
  • 立体显微镜
多光子显微镜企业商机

当激光光束焦点的位置在镜面上,此时被反射的激光在无限空间中成为准直光束,并在OBJ2的焦平面上形成了一个激光光斑。同理,如果横向扫描光束,则会形成远离倾斜镜镜面的焦点,这又导致返回的光束会聚或发散,进而OBJ2能在轴向不同位置形成焦点,通过这种方式即能实现连续的轴向扫描。对于较小的倾斜角,聚焦没有球差。该组在实验中表征了这种将横向扫描转换为轴向扫描技术的光学性能,并使用它将光片显微镜的成像速度提升了一个数量级,从而可以在三个维度上量化快速的囊泡动力学。该组还演示了使用双光子光栅扫描显微镜以12kHz进行共振远程聚焦,该技术可对大脑组织和斑马鱼心脏动力学进行快速成像,并具有衍射极限的分辨率。多光子显微镜是一种用于生物学领域的分析仪器。美国共聚焦多光子显微镜方案

美国共聚焦多光子显微镜方案,多光子显微镜

比较两表格中的相关参数可以看出,基于分子光学标记的成像技术已经在生物活检和基因表达规律方面展示了较大的优势。例如,正电子发射断层成像(PET)可实现对分子代谢的成像,空间分辨率∶1-2mm,时间分辨率;分钟量级。与PET比较,光学成像的应用场合更广(可测量更多的参数,请参见表1-1),且具有更高的时间分辨率(秒级),空间分辨率可达到微米。因此,二者相比,虽然光学成像在测量深度方面不及PET,但在测量参数种类与时空分辨率方面有一定优势。对于小动物(如小白鼠)研究来说,光学成像技术可以实现小动物整体成像和在体基因表达成像。例如,初步研究表明,荧光介导层析成像可达到近10cm的测量深度;基于多光子激发的显微成像技术可望实现小鼠体内基因表达的实时在体成像。美国bruker多光子显微镜准确定位多光子显微镜可以进行深层成像,且具有三维成像的能力,可以应用于拍摄不透明的厚样品。

美国共聚焦多光子显微镜方案,多光子显微镜

双光子荧光显微成像主要有以下优点∶a.光损伤小∶双光子荧光显微镜使用可见光或近红外光作为激发光,对细胞和组织的光损伤很小,适合于长时间的研究;b.穿透能力强∶相对于紫外光,可见光或近红外光具有很强的穿透性,可以对生物样品进行深层次的研究;c.高分辨率∶由于双光子吸收截面很小P,只有在焦平面很小的区域内可以激发出荧光,双光子吸收局限于焦点处的体积约为λ范围内;d.漂白区域很小,焦点以外不发生漂白现象。e.荧光收集率高。与共聚焦成像相比,双光子成像不需要光学滤波器,提高了荧光收集率。收集效率提高直接导致图像对比度提高。f.对探测光路的要求低。由于激发光与发射荧光的波长差值加大以及自发的三维滤波效果,多光子显微镜对光路收集系统的要求比单光子共焦显微镜低得多,光学系统相对简单。g.适合多标记复合测量。许多染料荧光探针的多光子激发光谱要比单光子激发谱宽阔,这样,可以利用单一波长的激发光同时激发多种染料,从而得到同一生命现象中的不同信息,便于相互对照、补充。

现代分子生物学技术的迅速发展和科技的进步,特别是随着后基因组时代的到来,人们已经能够根据需要建立各种细胞模型,为在体研究基因表达规律、分子间的相互作用、细胞的增殖、细胞信号转导、诱导分化、细胞凋亡以及新的血管生成等提供了良好的生物学条件。然而,尽管人们利用现有的分子生物学方法,已经对基因表达和蛋白质之间的相互作用进行了深入、细致的研究,但仍然不能实现对蛋白质和基因活动的实时、动态监测。在细胞的生理过程中,基因、尤其是蛋白质的表达、修饰和相万作用往往发生可逆的、动态的变化。目前的分子生物学方法还不能捕获到蛋白质和基因的这些变化,但获取这些信息对与研究基因的表达和蛋白质之间的相互作用又至关重要。因此,发展能用于、动态、实时、连续监测蛋白质和基因活动的方法是非常必要的。多光子显微镜的分辨率比传统的单光子共聚焦要低的多。

美国共聚焦多光子显微镜方案,多光子显微镜

某种物质能产生荧光,首要条件是分子必须具有吸收的结构,即生色团(分子中具有吸收特征频率的光能的基团)。其次,该物质必须具有一定的量子产率和适宣的环境。我们把分子中发射荧光的基团称为荧光团。荧光团一定是生色团,但生色团不一定是荧光团。因为,如果生色团的量子产率等于零,就不能发射出荧光,处于激发态的分子,可以由许多方式(如热,碰撞)把能量释放出来,发射荧光只是其中的一种方式。此外,一种物质吸收光的能力及量子产率又与物质所处的环境密切相关。滔博生物-三维显微镜-适用于各行各业的观察需求!美国进口多光子显微镜峰值功率密度

多光子显微镜,突破光学成像技术极限,开启生命科学新纪元。美国共聚焦多光子显微镜方案

单光子激发荧光的过程,就是荧光分子吸收一个光子,从基态跃迁到激发态,跃迁以后,能量较大的激发态分子,通过内转换把部分能量转移给周围的分子,自己回到比较低电子激发态的比较低振动能级。处于比较低电子激发态的比较低振动能级的分子的平均寿命大约在10s左右。这时它不是通过内转换的方式来消耗能量,回到基态,而是通过发射出相应的光量子来释放能量,回到基态的各个不同的振动能级时,就发射荧光。因为在发射荧光以前已经有一部分能量被消耗,所以发射的荧光的能量要比吸收的能量小,也就是荧光的特征波长要比吸收的特征波长来的长。美国共聚焦多光子显微镜方案

与多光子显微镜相关的**
信息来源于互联网 本站不为信息真实性负责