热电堆又叫温差电堆,它利用热电偶串联实现探测功能,是较为古老的一种IR探测器。以前,热电堆都是基于金属材料制备的,具有响应速度慢、探测率低、成本高等致命劣势,不受业内人士的待见。随着近代半导体技术的迅猛发展,半导体材料也被应用到了热电堆的制作中。半导体材料普遍比金属材料的塞贝克(Seebeck)系数高,而且半导体的微加工技术保证了器件的微型化程度,降低其热容量,因此热电堆的性能得到了**地优化。互补金属氧化物半导体(CMOS)工艺的引入,让红外热像仪热电堆芯片电路技术实现了批量生产。采用专业测温型机芯,外部加装双光防爆型护罩的红外热像仪,确保机芯的准确性和安全性。欧普士红外热像仪试用
(2)InSb探测器(PC&PV)InSb属于Ⅲ-Ⅴ族化合物半导体材料,它是**早应用于IR探测技术的材料之一,其生长技术已发展得非常成熟。在液氮温度下,InSb带隙所对应的波长稍稍大于5μm,此时InSb探测器的响应范围完美覆盖MIR波段,且探测率能在整个MIR波段维持很高的水平,因此InSb探测器在MIR波段探测方面有着举足轻重的地位。下图是InSb半导体材料及完成后的芯片。随着红外热像仪工作温度的上升,InSb探测器的量子效率可维持不变,直至160K才开始逐渐衰减。InSb FPA探测器被广泛应用到了***与天文领域,美国RVS(Raytheon Vision Systems)是这类探测器比较大且**出色的制造商。德国testo红外热像仪产品介绍红外热像仪与普通相机有何不同?
红外热像仪的操作相对来说并不复杂,但需要一定的学习和熟悉过程。以下是一般红外热像仪的操作步骤:打开红外热像仪:通常有一个开关或按钮,按下开关或按钮即可打开设备。调整显示设置:红外热像仪通常具有不同的显示模式和设置选项,可以根据需要调整亮度、对比度、色彩等参数。焦距调整:根据观察距离和目标大小,调整红外热像仪的焦距,以确保获得清晰的图像。观察目标:将红外热像仪对准目标,观察热图显示。可以通过移动设备或调整视角来获取图像。分析和解读图像:根据红外热像仪显示的热图,分析和解读目标的热分布情况。可以根据需要进行测温、标记、保存图像等操作。关闭红外热像仪:使用完毕后,按下开关或按钮关闭设备。
对于该类探测器,基底由Si变为Ge时,其探测波段可从IR延伸到THz,在这里姑且将Si基与Ge基两类放在一起加以阐述。传统的非本征探测器是基于被掺杂的Ge或Si作为吸收材料制作而成的结构简单的PC探测器,主要有Ge:X[X=Hg、Ga、铍(Be)、锌(Zn)]、Si:Y[Y=Ga、砷(As)、铟(In)]等类型。这类探测器的响应范围取决于杂质元素在基底里的离化能量,一般可覆盖LWIR、VLWIR乃至THz波段,但需要在低温(<10K)下工作。由于响应波段很宽,非本征探测器被应用到了航天领域,然而困境也随之出现:在太空中核辐射对探测器响应的影响较大,需要减薄探测器吸收层来降低影响,但这样也会使量子效率降低红外热像仪及可应对井下严苛环境,严密监视井上井下状态,助力客户安全生产、提高效率,降低成本。
受限于俄歇复合的存在,红外热像仪HgCdTe探测器的在室温下的性能较差,如何降低HgCdTe材料内俄歇复合的几率是HgCdTe探测器发展道路上亟需攻克的一大难题。HgCdTe FPA探测器在气象和海洋监视、***侦察、导弹预警以及天文观测等许多方面都有无可替代的重要地位。我国***的风云气象卫星系列都装备了HgCdTe FPA探测器用于获取全球气象资料,为数值天气预报业务的实施和各种灾害性天气的预警预报提供了强有力的数据支持,为我国在全球范围内实现高时效性的高精度成像观测能力、高精度的大气温湿度垂直分布探测能力奠定了坚实的基础。红外热像仪是如何工作的?超高速短波红外热像仪使用方法
红外热像仪可检测的目标数量与镜头大小、红外像素、目标物体大小、检测距离等因素有关。欧普士红外热像仪试用
红外热像仪可以用于建筑和房屋检测。以下是一些常见的应用场景:热桥检测:红外热像仪可以检测建筑物中的热桥,即导热性能较差的区域,如墙体接缝、窗框等。通过检测热桥,可以找到导致能量损失和热舒适性问题的地方,并采取相应的改善措施。热漏风检测:红外热像仪可以检测建筑物中的热漏风现象,即由于建筑物密封性不好而导致的能量损失。通过检测热漏风,可以找到漏风点,进而采取密封措施,提高建筑物的能源效率。绝缘性能检测:红外热像仪可以检测建筑物中的绝缘性能,如检测墙体、屋顶、地板等的绝缘情况。通过检测绝缘性能,可以发现潜在的能量损失和安全隐患,并采取相应的绝缘改善措施。湿度检测:红外热像仪可以检测建筑物中的湿度分布情况,如检测墙体、屋顶等的潮湿程度。通过检测湿度,可以发现潜在的水患问题,并采取相应的防水措施。欧普士红外热像仪试用