2020年,TonmoyChakraborty等人提出了一种加快2PM轴向扫描速度的方法[2]。在光学显微镜中,物镜或样品的缓慢轴向扫描速度限制了体积成像的速度。近年来,通过使用远程聚焦技术或电可调谐透镜(ETL)已经实现了快速轴向扫描;但是,远程聚焦中反射镜的机械驱动会限制轴向扫描速度,ETL会引入球面像差和更高阶像差,从而无法进行高分辨率成像。为了克服这些局限性,该组引入了一种新颖的光学设计,能将横向扫描转换为可用于高分辨率成像的无球差的轴向扫描。该设计有两种实现方式,第一种能够执行离散的轴向扫描,另一种能够进行连续的轴向扫描。具体装置如图3a所示,由两个垂直臂组成,每个臂中都有一个4F望远镜和一个物镜。远程聚焦臂包含一个检流扫描镜(GSM)和一个空气物镜(OBJ1),另一个臂(称为照明臂)由一个水浸物镜(OBJ2)构成。将这两个臂对齐,以使GSM与两个物镜的后焦平面共轭。准直的激光束被偏振分束器反射到远程聚焦臂中,GSM对其进行扫描,进而使得OBJ1产生的激光焦点进行横向扫描。 由于光的波长有限,光子显微镜的分辨率受到限制,无法观察到更小的结构和细胞器。美国模块化多光子显微镜实验
多光子激光扫描显微镜的产业发展,世界多光子激光扫描显微镜产业主要分布在德国和日本,德国以徕卡显微系统和蔡司为基础,日本以尼康和奥林巴斯为基础。2020年以来,这些企业占据了全球多光子激光扫描显微镜市场的64.44%,它们的发展策略影响着多光子激光扫描显微镜市场的走向。目前,世界市场对多光子激光扫描显微镜的需求正在增长,中国市场的需求增长更快。未来五年多光子激光扫描显微镜市场的发展在中国将仍有巨大的发展潜力。Ultima 2P Plus多光子显微镜实验高速扫描和高分辨率的完美结合,多光子显微镜提高样品处理速度和精度。
2020年,TonmoyChakraborty等人提出了加速2PM轴向扫描速度的方法[2]。在光学显微镜中,物镜或样品缓慢的轴向扫描速度限制了体成像的速度。近年来,通过使用远程聚焦技术或电调谐透镜(ETL)已经实现了快速轴向扫描。但远程对焦时对反射镜的机械驱动会限制轴向扫描速度,ETL会引入球差和高阶像差,无法进行高分辨率成像。为了克服这些限制,该小组引入了一种新的光学设计,可以将横向扫描转换为无球面像差的轴向扫描,以实现高分辨率成像。有两种方法可以实现这种设计。***个可以执行离散的轴向扫描,另一个可以执行连续的轴向扫描。如图3a所示,特定装置由两个垂直臂组成,每个臂具有4F望远镜和物镜。远程聚焦臂由振镜扫描镜(GSM)和空气物镜(OBJ1)组成,另一个臂(称为照明臂)由浸没物镜(OBJ2)组成。两个臂对齐,使得GSM与两个物镜的后焦平面共轭。准直后的激光束经偏振分束器反射进入远程聚焦臂,由GSM进行扫描,使OBJ1产生的激光焦点可以进行水平扫描。
在生物成像中,我司多光子显微镜具有清(清晰),快(快速),深(深层),活这四个方面。结合了多光子上转化材料以及时间编码的结构光超分辨技术,实现了快速(50MHz的扫描速度),超分辨(超衍射极限)成像。作为一种新的高速,超高分辨率的成像系统,MUTE-SIM可以帮助我们对快速运动的生物图像进行分辨率高的成像。尽管关于深度成像的应用我们没有进一步展示,但是结合1560nm近红外光相对于可见光更佳的穿透性,我们相信该技术将有利于对生物组织进行高速,超分辨,高深度地成像,有助于生物影像学的发展。滔博生物TOP-Bright是一家集研发,生产,销售于一体的专注于神经科学产品及致力于向高校、科研机构等领域提供实验室一体化方案的高科技企业。业务服务范围已遍布至全国各地几百家实验室。目前公司主营产品是享誉全球的国际品牌和产品,这些仪器设备都是科学研究所必备且不可替代的基础仪器。多光子显微镜-适用于各行各业的观察需求。
随着现代分子生物学技术的快速发展和科学技术的进步,特别是后基因组时代的到来,人们已经能够根据需要建立各种细胞模型,这为在体内研究基因表达、分子间相互作用、细胞增殖、细胞信号转导、诱导分化、细胞凋亡和新生血管生成提供了良好的生物学条件。然而,尽管利用现有的分子生物学方法对基因表达与蛋白质的相互作用进行了深入细致的研究,但仍然无法实现对蛋白质和基因活性的实时动态监测。在细胞的生理过程中,基因尤其是蛋白质的表达、修饰和相互作用往往是可逆的、动态变化的。目前,分子生物学方法无法捕捉到蛋白质和基因的这些变化,但获得这些信息对于研究基因表达与蛋白质的相互作用非常重要。因此,有必要发展一种动态、实时、连续监测蛋白质和基因活性的方法。多光子显微镜使用高能量锁模脉冲激光器。bruker多光子显微镜系统
多光子显微镜,助力科研人员深入探索生命科学的奥秘。美国模块化多光子显微镜实验
Ca2+是重要的第二信使,对于调节细胞的生理反应具有重要的作用,开发和利用双光子荧光显微成像技术对Ca2+荧光信号进行观测,可以从某些方面对有机体或细胞的变化机制进行分析,具有重要的意义。利用双光子荧光显微成像技术可以观察细胞内用荧光探针标记的Ca2*的时间和空间的荧光图像的变化,还可以观察细胞某一层面或局部的(Ca2+)荧光图像和变化。通过对单细胞的研究发现,Ca2+不仅在细胞局部区域间的分布是不均匀的,而且细胞内各局部区域的不同深度或层次间也存在不同程度的Ca2+梯差即所谓的空间Ca2梯差。美国模块化多光子显微镜实验