Knepper等通过对透射电镜得到的200个囊泡进行粒径分析,结果表明尿液中外泌体的粒径分布约为35~40nm,磷脂双分子层厚度约为直径的1/5~1/10。透射电镜结合免疫金标记法能够得到外泌体表面特征分子的信息,有助于揭示外泌体的产生机制与来源。动态光散射(dynamiclightscattering,DLS)和纳米颗粒跟踪分析(nanoparticletrackinganaly[1]sis,NTA)都是利用光学手段获得囊泡粒径分布的方法。两者的不同之处在于动态光散射通过检测散射光的强度计算得到颗粒粒径,而纳米颗粒跟踪分析通过追踪单个粒子的运动轨迹计算得到样品浓度、粒径分布等信息。外泌体大小不均的原因可能是由于MVB的限制膜不均匀内陷,导致流体和固体的总含量不同。胸水外泌体芯片
与干细胞不同的是:干细胞外泌体对受损的微环境不响应,但它可以通过改变细胞外基质,改变受体细胞的转录组和蛋白质组,来调节细胞凋亡,生长,增殖和分化途径。因此,干细胞外泌体具有减少细胞凋亡、减轻炎症反应、促进血管生成、抑制纤维化、提高组织修复潜力等重要生物学功能,在调控组织再生方面存在良好的临床应用前景。干细胞外泌体的优点,体积小:纳米级粒子,大小约为细胞的1/200,因此能很好地被人体所利用。免疫反应程度低:外泌体不是细胞,只作为载具,外膜的表层上呈现较少的抗原,免疫系统难识别,对人体影响小。可穿透血脑障壁:体积小加上脂质外膜的特性,使其可以通过血脑障壁,抵达脑部组织。腹膜透析液外泌体lncRNA芯片几乎没有混入外泌体以外的蛋白,回收量高,操作重复性好。
当外泌体在第1次被发现的时候,外泌体被认为是细胞排泄废物的一种方式,如今随着大量对其生物来源、其物质构成及运输、细胞间信号的传导以及在体液中的分布的研究发现外泌体具有多种多样的功能。外泌体的功能取决于其所来源的细胞类型,其可参与到机体免疫应答、抗原提呈、细胞迁移、细胞分化、瘤侵袭等方方面面。有研究表明瘤来源的外泌体参与到瘤细胞与基底细胞的遗传信息的交换,从而导致大量新生血管的生成,促进了瘤的生长与侵袭。
外泌体的组成较为复杂,其内含有多种生物大分子,如:核酸(双链DNA和各种RNA亚型)、蛋白质和脂质。这些分子被外泌体携带进入血液循环,而后被靶细胞吸收,从而调节靶细胞基因表达和细胞功能。此外,外泌体相关的miRNA作为短单链和非编码RNA分子,调节致病基因或抑病基因的表达,参与细胞分化、细胞凋亡及细胞信号的传导。有研究表明,外泌体能影响种瘤微环境的形成、增强种瘤细胞的侵袭和转移能力、介导种瘤免疫压制及参与种瘤放化疗抵抗进而促进种瘤的发展。外泌体研究相对困难,需要尽快开发操作简单、可提取高纯度外泌体的技术。
外泌体是细胞在特定条件下分泌的小囊泡,是细胞间传递信号,相互沟通和影响的重要工具,它可以直接进入受体细胞影响细胞功能。外泌体PK细胞因子:磷脂双层膜结构,可保护内容物,包含多种细胞因子可直接进入受体细胞。外泌体PK干细胞:无免疫排斥,体积小穿透力强,可避免伦理道德争议。年轻的脂肪组织中提取外泌体,在特定条件下扩大培养出具有调控毛发根部的囊干细胞功能的外泌体,包含多种细胞因子的外泌体直接进入毛发根部的囊细胞,恢复毛发根部的囊干细胞的正常功能。结果表明,PS亲和法可以检测到许多目前为止都无法检测的外泌体蛋白质和RNA。吉林外泌体Dir
外泌体主要来源于细胞内内溶酶体微粒内陷形成的多囊泡体,经多囊泡体外膜与细胞膜融合后释放到胞外基质中 。胸水外泌体芯片
微流控芯片是一种可兼容多种外泌体分离方法的新兴检测平台,这些方法包括免疫亲和分离、膜过滤、纳米线捕获、声纳米过滤和确定性侧向位移分选等。微流控装置是由几十到几百微米的不同直径微通道网络组成的紧凑单元,能够处理皮升到微升范围内的黏性介质样品;且根据特定的功能,微通道可以相互连接,使用额外的特定装置来微调流体运动。微流控技术能够以极高的准确性和特异性在微尺度上重现众多实验室过程,取代昂贵的设备,基于微流控技术的电化学外泌体检测芯片已经受到广fan关注。胸水外泌体芯片