直线电机是一种将电能直接转换为直线运动机械能的电机,而不需要通过齿轮、皮带等传动机构转换。它的基本原理与传统的旋转电机相似,但运动形式不同,可以简单的把直线电机看成将旋转电机劈开并展开。以下是直线电机的主要原理介绍:1、结构组成直线电机主要由以下几个部分组成:初级线圈:产生磁场,通常固定不动。次级线圈(或磁轨):产生感应电流或与初级线圈相互作用,通常安装在运动部件上。导轨:用于支撑和导向运动部件。2、工作原理:直线电机的工作原理基于电磁感应定律和洛伦兹力定律:电磁感应:当初级线圈通以交流电时,会在周围空间产生变化的磁场。洛伦兹力:这个变化的磁场会在次级线圈(或磁轨)中产生感应电流,进而产生与初级线圈磁场相互作用的力,这个力使得次级线圈沿着导轨做直线运动。TOYO机器人是工业自动化优先选择。高精度TOYO机器人气浮平台
TOYO直线电机分类:有铁芯平板型直线电机、无铁芯U型直线电机、轴棒型直线电机。有铁芯平板型直线电机分为:G系列与一般系列;G系列:速度可达:2500mm/s,水平负载:3-20KG,行程可达:2520mm,精度:±1~2μ。一般系列:速度可达:2500mm/s,水平负载:20-120KG,行程可达:8000mm,精度:±1~2μ。无铁芯U型直线电机:速度可达:2500mm/s,水平负载:4-15KG,行程可达:1290mm,精度:±1~2μ。轴棒型直线电机:速度可达:2500mm/s,水平负载:15-51KG,行程可达:1940mm,精度:±1~2μ。奈米定位平台系列TOYO机器人千级无尘TOYO机器人运行噪音低于65分贝。
直线模组的传动方式主要有丝杆传动和皮带传动两种,它们各自具有独特的特点,适用于不同的应用场景。丝杆传动的直线模组,如 GTH8 丝杆模组,具有精度高的优势。这是因为丝杆在传动过程中,通过螺纹的精确配合,能够实现高精度的直线运动,位置重复精度可达 ±0.005mm 甚至更高,特别适合对精度要求极高的加工和装配工艺。然而,丝杆传动的速度相对较慢,其最高转速和线性速度受到一定限制,在需要快速运动的场景中可能无法满足需求。此外,丝杆传动的成本相对较高,维护也较为复杂。相比之下,皮带传动的直线模组具有速度快的特点,能够实现较高的运行速度,适用于需要快速搬运和定位的场合。皮带传动的成本相对较低,维护也较为简单。
TOYO 机器人的高精度定位与运动控制技术是其为突出的优势之一。在制造业的众多精细生产环节中,如电子芯片制造、精密机械加工等,对零部件的定位精度要求极高,往往需要达到微米甚至纳米级别。TOYO 机器人采用了高精度的滚珠丝杠、直线导轨等先进传动部件,这些部件在机械结构上具备极高的制造精度和稳定性。滚珠丝杠的精密螺纹设计能够将电机的旋转运动精确转换为直线运动,其高精度的螺距控制确保了每一次位移的准确性;直线导轨则为运动部件提供了稳定、平滑的支撑,有效减少了运动过程中的摩擦和偏差。配合精密的控制系统,TOYO 机器人能够实现对运动轨迹的准确规划和实时调整。通过先进的传感器技术,它可以实时监测运动部件的位置、速度和加速度等参数,并将这些信息反馈给控制系统。控制系统基于这些反馈数据,运用复杂的算法进行快速计算和决策,及时修正运动偏差,从而确保机器人在长时间、强度高的工作过程中始终保持高度的准确性和重复性。 TOYO机器人获CE、ISO等多项国际认证。
此外,TOYO-GCH全系列模组均可外部注油,无需拆卸滑座外盖及钢带即可在滑座处注油保养,这简化了设备的维护流程,减少了设备停机时间,提高了生产效率。其本体与滑座采用一体成型钢材,改善了原始铝滑座刚性较差的问题,使得模组在承受较大负载和高速运动时仍能保持稳定的性能。在机械加工行业的一些重载应用场景中,TOYO-GCH系列模组的高刚性结构能够确保机器人准确地完成加工任务,避免因刚性不足而导致的加工误差。该系列模组还可选用不同品牌的伺服电机(三菱、松下、安川、台达、汇川等),并且电机的安装方式分为内置、外露、左折、右折、下折等多种形式,用户可以根据实际需求和设备布局灵活选择,进一步提高了产品的适用性和可定制性。TOYO机器人采用自研核心算法,性能优越。东洋TOYO机器人小体积模组
TOYO机器人助力企业智能制造升级。高精度TOYO机器人气浮平台
多功能集成特点:多轴模组可以便捷地搭载各种末端执行器,如焊接头、吸盘、夹爪等,根据不同的生产任务进行快速切换。在智能家居产品制造中,先是利用夹爪准确抓取电路板,完成插件工序;接着切换为焊接头,对焊点进行牢固焊接;再换上吸盘,将组装好的成品小心搬运至检测区域。通过集成多种功能,一台TOYO机器人多轴模组就能完成原本需要多台设备协同的复杂生产流程,有效减少了生产线占地面积,降低了设备采购与维护成本,提升了整体生产效益。高精度TOYO机器人气浮平台