高频激振时效技术指的是将工件内部晶体微粒关系视为质量-弹簧系统,对零件施加激振频率后,元件便随之启动。系统普遍为阻尼振动系统,弹簧刚度大,因而系统存在多种共振频率。当外界激振频率与该系统频率相同时,便实现共振,系统出现错位后会在短时间内恢复到平衡位置,应力便随之消失。第二,现阶段,频谱谐波时效技术已在很多领域得到普遍推广与应用。相较于传统振动时效技术,现代频谱谐波时效技术已淘汰扫描方式,转而采用傅里叶方法进行频谱分析,并在多种频率中优先选出代表性强的振型频率进行时效处理。振动时效的影响可能与材料的热膨胀系数和热导率等热学性质相关。江苏震动时效应力消除设备
振动时效效果主要是指零件振动后残余应力消除、均化、抗变形能力的提高以及尺寸精度的稳定化程度。在生产现场常采用,根据的振幅时间(A-t)曲线采用下列方法来快速判断振动时效效果:(1)检测幅频曲线共振峰形状的变化,在幅频曲线上表现出共振峰由宽变窄: (2)检侧共振频率发生的变化; (3)检测振动过程中零件幅值及激振功率的变化,若保持激振能较不变,则振幅上升;若控制振幅值恒定.则激振功率降低。若出现上述一种情况,在实践中就判定振动时效达到了预期的目的。为了定量了解振动时效工艺效果,使用磁应力仪,检测了挖掘机平台等工件焊缝处振动时效前后的残余应力。江苏震动时效应力消除设备机械性能明显提高,经过振动时效处理的构件其残余应力可以被消除20%—80%左右。
振动时效可以解释为一个闭环控制的“激励-响应”振动体系,如图所示。常用的“激励源”(激振器)是一个有偏心质量的电机,偏心块的旋转产生激振力,可通过调节偏心距改变激振力大小。激振器与工件通过C型夹刚性固定。用橡胶垫支撑工件,保证工件在振动时效过程中呈“弹性悬浮”状况。振动过程中工件的“响应”(振动加速度)通过加速度传感器传递回控制系统。控制系统是振动时效设备的关键,通过检测振动加速度的变化来控制偏心电机的旋转速度和振动持续时间。通过检测系统的振动加速度幅度,找到系统的共振频率,保证系统在共振或亚共振状态下振动,并获得足够大的振动动应力。振动时效处理结束后,可打印出振动过程的振动加速度、转速和振动处理时间的关系图,用来评定振动时效的工艺效果。
振动时效机理及装置的原理:1、振动时效机理:工件在毛坯制造及切削加工等过程中,使内部产生残余应力,致使工件处于不稳定状态,降低了尺寸稳定性和机械物理性能。振动时效工艺是通过锤击来消除金属工件中的残余应力的。工件在周期外力作用下产生共振,共振中交变动应力与工件内部残余应力叠加,经过一定时间,材料发生局部屈服,导致晶内和晶界错位产生滑移,原子从不稳定位能高的位置移向较稳定的位能低位置。经过此过程,工件宏观残余应力得到迁移、降低和均化,从而降低或消除工件的内部残余应力。2、振动时效装置的原理:机械振动时效装置主要包括激振器、控制主机、加速度传感器、支撑橡胶等部分。主要功能是控制激振器在某个激振力输出水平,在一定频率(转速)范围对任一频率以较高的稳频精度工作.尤其是共振峰前后负载特性变化较剧烈的情况下,并记录、识别和输出有关时效曲线及参数。振动时效设备可以对产品的振动性能进行定量评估,方便比较产品的性能差异。
振动时效设备是一种常用于材料疲劳试验和振动寿命评估的设备,其操作过程如下:准备工作:将待测试的材料或产品放置在设备的振动工作台上,并确保其固定牢固,以防止在振动过程中发生脱落或移位。设置参数:根据测试要求,设置振动时效设备的振动频率、振动幅度和振动时间等参数。这些参数的设置应该根据材料的特性和预期的寿命要求来确定。启动设备:确认参数设置无误后,启动振动时效设备。设备将开始按照设定的频率和幅度进行振动。监控和记录:在振动过程中,需要不断监控和记录振动设备的运行状态和振动试样的响应。可以使用传感器和数据采集系统来实时监测振动幅度、振动频率和振动加速度等参数。结束振动:当设定的振动时间达到后,停止振动设备。将振动试样从设备上取下,并进行外观检查和性能评估。振动时效可以通过试验和分析来评估材料或结构的可靠性和寿命。江苏震动时效应力消除设备
振动时效设备可以提高产品的质量和品牌价值。江苏震动时效应力消除设备
在操作振动时效设备时,需要注意以下问题:安全问题:振动时效设备通常需要较高的能量输入,操作人员应该穿戴适当的个人防护装备,如手套、护目镜和防护服,以确保安全。设备运行状态:在操作过程中,需要时刻关注振动设备的运行状态,确保其正常工作。如果发现设备有异常声音、振动幅度不稳定或其他异常情况,应立即停止操作并进行检修。振动参数设置:振动参数的设置应根据具体材料和产品的特性来确定,过高或过低的振动频率和幅度都可能导致测试结果的偏差。数据记录和分析:及时记录和分析振动试验的数据是非常重要的,可以帮助评估材料的疲劳寿命和预测产品的振动寿命。江苏震动时效应力消除设备