大多采用容器内加热的方法, 即将加热元件置于容器内, 通过辐射及对流换热对整个容器进行加热。容器内加热分为电加热以及燃油( 气) 加热。电加热一般将板式远红外电加热器置于容器内部, 主要以辐射换热为主, 通过热电偶反馈信号至控制回路控制加热器的输出以达到规定的工艺参数, 其自动化程度较高, 但设备投入和对电力的消耗很大。燃油( 气) 法加热是以容器内部喷射燃料燃烧进行加热, 通过形成燃烧产物的回转气流, 利用辐射及对流对整个容器进行加热, 此方法应用比较多, 但很容易在容器内形成不均匀的加热区, 虽然有些单位在设计系统时增加了挡流板, 但仍然不能保证内腔温度的均匀性。个别单位虽然在重点部位加装了远红外电加热器, 但也无法从根本上解决问题。针对燃油( 气) 法的一些弊端, 国内还发展了增压旋转反射燃油加热, 获得了满意的效果。残余应力的测量可以为材料制造过程中的调整提供参考。浙江屈服应力分布规律
频谱谐波时效针对大中型构件的残余应力均化具有很好的效果,但在航空航天构件生产中,薄壁件占了很大部分。如何去除薄壁件的残余应力呢?随着振动时效技术的叠加和更新,北京翔博科技单独研发了模态宽频时效**技术,获得自主知识产权。模态宽频时效技术作为振动时效的一种,采用高频率、低动应力振动加速零件的时效进程,使零件内部残余应力降低并达到稳定状态,对于减少应力集中降低开裂失效风险、提高零件的加工尺寸精度和尺寸稳定性具有积极作用,能够有效解决产品交付后延迟变形、疲劳裂纹等问题,提高产品交付后稳定性、可靠性。浙江屈服应力分布规律残余应力常常由加工、热处理等过程引起。
塑料制件出现内应力,是无法注塑厂商经常遇到的事情,特别是PC材料,内应力问题,导致大量的不合格的出现。本文,就为大家介绍塑料内应力的一些检测方法以及如何处理塑料的内应力问题。通常是把零件放在溶剂中,15s~ 2min等,在拿出来看是否有开裂来判断是否有应力。原理:根据介质应力决裂的现象,即溶济分子渗透到树脂的大分子之间后,降低了分子之间的彼此作用力。内应力大的地方在浸入前分子之间的作用力原来就有所削弱,浸入溶济后这些减弱处所进一步减弱,而引起开裂,内应力小的地方在短时间内不会开裂。对尺寸稳定性的影响:焊接残余应力随时间发生一定的变化,焊件的尺寸也随之变化。焊件的尺寸稳定性又受到残余应力稳定性的影响。
残余应力检测仪主要功能:按常规盲孔法根据输入的打孔释放应变计算较大残余应力、较小残余应力、较大残余应力对应变花的0°敏感栅的角度(逆时为正)。对没有实际标定的盲孔应变释放系数的工件,可按盲孔测试理论估计出较接近实测值的应变释放系数,从而快速简便地计算残余应力。根据不同打孔方式和材质带来的孔边附加塑性应变值,对常规计算的残余应力进行修正。尤其是对与残余应力幅值联动变化的孔边效应所致误差进行修正。针对各种打孔方式所致的盲孔的实际直径和中心偏移量,对常规计算的残余应力进行修正。针对工件在贴片前表面处理所致的附加塑性应变,对常规计算的残余应力进行修正。通过标定高残余应力对应变释放系数的影响,对常规计算的残余应力进行修正。对计算及修正结果进行误差范围的真值估计。残余应力是材料科学和工程领域中的一个重要研究课题。
振动时效是利用共振原理来消除和均化金属铸件、锻件、焊接结构件、有色金属等零件的残余应力,以防止零件尺寸变形和开裂。无环境污染、不受零件大小、场地等限制、且时效效果直观,并优于热时效。投资少适用性强。与传统的热时效相比它无需庞大的时效炉,现代工业中的大型铸件与焊接件越来越多也越来越大,如采用热时效消除应力则需建造大型时效炉,不只造价昂贵、利用率低,而且炉内温度很难均匀,消除应力效果差。采用振动时效可以完全避免这些问题。振动消除应力实际上就是用周期的动应力与残余应力叠加,使构件局部产生塑性变形而释放应力。残余应力的研究需要考虑材料的应用环境和使用寿命等因素。浙江屈服应力分布规律
振动消除应力设备消除应力的方法有自然时效。浙江屈服应力分布规律
选择一台实用的振动时效设备尤其重要,设备的好坏关乎振动时效工艺可靠性,决定振动时效的效果。频谱谐波时效,就是振动时效的一种。通过傅里叶分析方法对金属构件进行频谱分析,在0-100HZ范围内找出工件几十种谐波频率,从中主选出效果较佳的五种谐波频率,施加足够的能量进行振动处理,产生多方向动应力,与多维分布的残余应力叠加,达到材料的屈服极限时,将产生局部的塑性变形,从而达到均化残余应力的目的。除此之外,还可采用锤击法均化残余应力。焊接残余应力产生的根本原因是,由于焊缝在冷却过程中的纵向收缩和横向收缩,因此焊后利用小锤轻敲焊缝及其邻近区域,使金属展开,能有效地减少焊接残余应力。据测定,利用锤击法可使应力减少1/2~1/4。浙江屈服应力分布规律