包括:主控制器mcu、电池电压检测模块、电池温度检测模块、气体浓度检测模块、灭火装置、热管理模块和通信模块。其中,mcu与电池电压检测模块、电池温度检测模块、气体浓度检测模块、灭火装置、热管理模块和通信模块分别相连。气体浓度检测模块包括一个或多个内置于电池箱内的气体检测单元,该单元可通过485总线将数据传输给安装于电池箱外的bms控制单元,bms控制单元内部设置主控制器mcu、电池电压检测模块、电池温度检测模块、热管理模块和通信模块。气体检测单元与bms控制单元的分开布置有效解决了电池箱内空间有限,不利于安装控制模块的缺点,同时485总线通信方式可根据实际需求布置检测单元数量。每个气体检测单元包括多个费加罗气体检测传感器和数据处理子单元,数据处理子单元通过多种检测气体传感器采集气体浓度数据,并通过485通信总线将数据传输给mcu;在一些实施例中,每个气体检测单元包括一个co传感器、一个h2传感器、一个烷烃类传感器以及数据处理子单元,数据处理子单元采集气体浓度信息后通过485通信总线的方式发送给主控mcu。传感器选择费加罗电化学气体传感器,该类传感器对气体的检测具有很高的灵敏度和良好的稳定性,预热时间小于30s。两个储能电池可配队组合。pack储能电池
开口槽13的槽口高度与分隔板9的高度保持一致,保证了分隔板9与伸缩板12的紧密连接,避免周转车在推动过程中分隔板9与开口槽13出现较大间隙导致分隔板晃动,从而影响储能电池10的周转。进一步,分隔板9通过伸缩板12一侧的板壁上开设的开口槽13与伸缩板12之间卡接连接,方便分隔板9可以随时拆卸,分隔板9的宽度与伸缩板12的长度保持一致,保证了分隔板9与伸缩板12的紧密连接。进一步,固定板14两侧的板壁上开设有水平对齐的通孔16,伸缩板12与固定板14之间通过通孔16内部的调节螺栓17紧固连接,且调节螺栓17贯穿固定板14顶部开设的内槽,可以通过调节螺栓17的调节来固定伸缩板12的伸缩位置,增加伸缩板12与固定板14连接的稳定。进一步,固定板14顶部开设的内槽的长度和宽度大于伸缩板12的长度和宽度,方便调节螺栓17调节伸缩板12的位置,且固定板14顶部开设的内槽深度小于固定板14高度,避免伸缩板12整体深入内槽中。工作原理:使用时,操作人员根据现有的储能电池10合理进行空间分配,先放满底层的托盘4,通过升降伸缩板12,调整车体合适高度,使用调节螺栓17调节固定板14与伸缩板12之间紧固连接,将分隔板9通过伸缩板12板壁开设的开口槽13卡接在伸缩板12的板壁上。厦门锂电池储能电池所述油脂凹槽内填充有导热硅脂。
第二实施例:如附图4至附图6所示,所述电池储能箱2为包含内空腔的箱体结构,所述电池储能箱2朝向散热通道6一侧的壁体和所述电池储能箱2远离于散热通道6一侧的壁体上均贯通开设有若干散热孔7。通过若干散热孔7以加快电池储能箱2内腔中的热量扩散。所述电池储能箱2内腔中沿散热通道6的长度方向间距设置有若干隔离条9,所述隔离条9为长条状结构,且各个所述隔离条9的长度方向沿垂直于散热通道6的方向设置,两相邻所述隔离条9之间的区域形成电池腔,所述电池腔内容纳电池组8。通过隔离条9将电池组8隔开,同样也是避免两相邻的电池组直接接触导热,保证电池组的安全性。且相应的,两相邻所述电池腔之间形成次级散热通道10,所述电池储能箱2两侧壁上的散热孔7均对应于次级散热通道10设置,所述次级散热通道10通过散热孔7与散热通道6连通设置。在散热组件4工作状态下,所述次级散热通道10与散热通道6为气流提供流动通道,以保证对两电池储能箱2的快速散热。第三实施例:还包括侧封板5,两个所述侧封板5分别对应封闭设置在散热通道6的两端,且所述散热通道6通过侧封板5形成封闭腔,从而使得在散热扇在向散热通道6排风的状态下,气流不至于从散热通道的两端流出。
其控制策略及实验平台的实现是本文重点研究内容之一。3)电池管理系统BMS是一种由电子电路设备构成的实时监测系统,能有效地监测电池系统的各种状态(电压、电流、温度、荷电状态、健康状态等)、对电池系统充电与放电过程进行安全管理(如防止过充、过放管理)、对电池系统可能出现的故障进行报警和应急保护处理以及对电池系统的运行进行优化控制,并保证电池系统安全、可靠、稳定的运行。BMS系统是BESS中不可缺少的重要组成部分,是BESS有效、可靠运行的保证。电池系统及其各级组成部分的荷电状态(StateofCharge,SOC)是实现整个电池系统是否能安全、可靠运行以及对其进行准确管理与控制的关键指标,因此,准确估计出电池系统及其各级组成部分的SOC是BMS**重要的功能之一,也是本文重点研究内容之一。(2)BESS的典型结构目前BESS的研究与开发还处于初级阶段,并未存在完全统一、成熟的系统结构形式,但其系统结构形式与容量扩大方式有关。当前BESS容量扩大主要有两种方式:第一种方式是从扩大单个PCS容量角度出发,通过采用高压、大电流变换器或级联多电平技术实现BESS的扩容;第二种方式是从系统角度出发,采用多个模块化BESS并联运行来实现BESS的扩容。其储能容量的多少取决于负荷的需求。
本实用新型属于储能系统领域,特别涉及一种电池组的安全储能系统。背景技术:目前,电池组一般通过电池储能箱进行存放和使用,通过电池储能箱对电池组进行一定的保护作用。但是,当多个电池储能箱同时在工作状态时,电池组工作产生大量的热量,而且由于两相邻的电池储能箱箱体贴合接触,箱体内的热量通过箱体向外传递并汇集在两箱体之间,热量难以充分扩散,造成局部高温,极易损坏箱体内部的电池组。技术实现要素:发明目的:为了克服现有技术中存在的不足,本实用新型提供一种电池组的安全储能系统,能够快速的对热量进行扩散,保证电池组的安全稳定。技术方案:为实现上述目的,本实用新型的技术方案如下:一种电池组的安全储能系统,包括基座、封盖、电池储能箱和散热组件,两组所述电池储能箱间距设置在基座的上方,且所述封盖盖设在两组所述电池储能箱的上方,两组所述电池储能箱、基座、封盖之间形成具有两端开口的散热通道,在所述封盖上沿散热通道的长度方向设置有至少一组散热组件,且所述散热组件对应于散热通道设置。进一步的,所述电池储能箱为包含内空腔的箱体结构。并网逆变系统由几台逆变器组成。深圳磷酸铁锂储能电池厂家
光伏发电单元能量不够,不足以提供电压和频率支撑而停止工作时。pack储能电池
如附图1和附图2所示,所述导热基座1远离于储能箱体10的一侧设置有安装板2,所述安装板2对应于散热翅片组4,且所述安装板2上贯通开设有至少一个安装孔6,所述安装孔6设置有散热扇3。通过若干散热扇3对散热翅片组4进行风冷散热,保证散热的快速进行。所述散热翅片组4包含若干板状的散热翅片7,所述散热翅片7的长度方向与风冷气流方向相同,且若干所述散热翅片7平行间距设置,所述散热翅片7之间形成散热通道8,所述散热通道8的一端对应于散热扇3的风口设置,且另一端为敞口设置。若干散热扇3产生的风冷气流通过各散热通道8,流动的气流携带走散热翅片7上大量的热量,以使得该处区域快速降温,且提升导热基座1对储能箱体的导热速度。若干所述散热翅片7的端部与安装板2间距设置,且位于散热翅片组4中**外侧的两个散热翅片7为外层散热翅片7a,所述外层散热翅片7a靠近安装板2的一端朝向安装板2延伸且抵接于安装板2上,位于两个外层散热翅片7a之间的若干散热翅片7与安装板2之间的间距形成气流汇合通道9,所述散热扇3均位于两个外层散热翅片7a之间,保证散热扇3产生的气流能均匀通过各散热通道8。如附图3和附图4所示,所述导热基座1与储能箱体10接触导热设置。pack储能电池
浙江瑞田能源有限公司汇集了大量的优秀人才,集企业奇思,创经济奇迹,一群有梦想有朝气的团队不断在前进的道路上开创新天地,绘画新蓝图,在浙江省等地区的能源中始终保持良好的信誉,信奉着“争取每一个客户不容易,失去每一个用户很简单”的理念,市场是企业的方向,质量是企业的生命,在公司有效方针的领导下,全体上下,团结一致,共同进退,**协力把各方面工作做得更好,努力开创工作的新局面,公司的新高度,未来浙江瑞田能源供应和您一起奔向更美好的未来,即使现在有一点小小的成绩,也不足以骄傲,过去的种种都已成为昨日我们只有总结经验,才能继续上路,让我们一起点燃新的希望,放飞新的梦想!