直流软启动回路由主直流接触器、辅助直流接触器及软启动电阻组成,避免上电瞬间产生大电流对储能变流器及电池的冲击。b、c两相的电路结构及器件参数与a相完全相同,不再重复叙述。a、b、c三相的直流母线电容输出端通过直流接触器进行连接,正极与负极分别单独进行连接,通过控制直流接触器的通断可以实现三相直流母线电容输出端连接在一起或者完全分开,当直流接触器闭合后,三相直流母线电容的正极连接在一起,直流母线电容的负极连接在一起,这时三相的dc+及dc-端只能连接同一种电压等级的电池,当直流接触器断开后,三相直流相互**,这时三相的dc+及dc-端可以分别连接不同电压等级的电池,实现同一台储能变流器对不同电压等级电池的适用性。将图3所示的储能变流器变压器原边首尾依次连接,即将变压器原边连接成三角形连接关系,能够实现三相三线式供电,简单的改变储能变流器的接线方式,即可实现三相四线制到三相三线制供电方式的转变,同一台机器可以适用不同的电网供电方式。需要说明的是,并联的变流器应该采用相同的接线方式,变流器交流侧和电网间接入并网/并联控制柜,并网控制柜采用相同的接线方式。在另一些实施方式中,公开了一种无隔离变压器储能变流器。不加储能的光伏并网发电系统将对线路潮流、系统保护、电网经济运行、电能质量运行调度等方面产生不利影响。上海助力车储能电池厂家
本实用新型属于电池管理系统领域,特别涉及一种储能电池管理系统的排线结构。背景技术:在储能电池管理系统的储能箱体内,包含若干高压控制电路,箱体内发热量较大,一般采用铜排进行各电器元件间的导电连接,如附图1所示,储能箱体21内包含若干电器元件22和铜排20,且现有的母线铜排和支路的子线铜排连接结构主要为通过在母线铜排上打孔与子线铜排连接。此种连接方式中,母线铜排与子线铜排连接需要在母线和支路铜排上加工孔,再通过螺栓连接,而使加工量大,增加了工作量和成本,而且在加工孔时还需保证孔的位置精度,否则会出现安装错位的现象。技术实现要素:发明目的:为了克服现有技术中存在的不足,本实用新型提供一种储能电池管理系统的排线结构,能够较大程度的提升铜排安装的便利性,且同时降低加工难度。技术方案:为实现上述目的,本实用新型的技术方案如下:一种储能电池管理系统的排线结构,包括母线和至少一个电性连接于所述母线上的子线,且所述子线通过连接组件与母线连接;所述连接组件包括母线接头、子线接头、连接件和紧固件,所述母线接头设置在母线上,所述子线接头设置在子线上,且所述子线接头通过连接件与母线接头电性连接。上海pack储能电池至导热基座的间距大于或等于散热翅片组的底面至导热基座的间距。
虽然第一种方式的系统结构简单且较适合高压大容量系统,具有一定发展潜力,但因受电力电子器件发展水平、投资成本及控制技术等因素制约,在目前实际应用中的大规模BESS较少采用第一种方式。对于第二种方式,从目前BESS在电力系统中的工程应用情况来看,根据电池储能系统典型结构BESS的接入方式、功率等级及放电持续时间等方面来分,其典型结构主要有:低压小容量BESS、中压大容量BESS、高压超大容量BESS,图1-4为3种BESS典型结构图。图1-4(a)为低压小容量BESS,系统由一个模块化BESS构成,一般直接接入400V交流电网中,额定功率通常在500kW及其以下,可放电持续时间为1~4h,可用于微网主电源、小区或楼宇储能、小型可再生能源并网等场合;图1-4(b)为中压大容量BESS,它是将多个模块化BESS并联后再经升压设备接入10kV或35kV电网,通常其额定功率在10MW及其以下,可放电持续时间为1~4h,可用于电能质量治理、削峰填谷、备用电源及可再生能源并网等场合;图1-4(c)为高压超大容量BESS,它是将多个模块化BESS并联后经低压升压设备组成中压大容量BESS,再将多个中压大容量BESS并联后经高压升压设备接入35kV或110kV电网,通常其额定功率在10MW以上。
所述三相支路直流母线电容输出端的正极通过直流接触器进行连接;所述三相支路直流母线电容输出端的负极通过直流接触器进行连接。参照图3,储能变流器每相单独连接变压器隔离,将交流电直接变换为直流电为电池充电,同时实现电池放电并网,储能变流器能够实现直流输出电压的调节以及电流的调节功能。储能变流器直流端有三组连接端子,每组端子可以实现与电池连接。以a相电路结构为例,变压器t1起到隔离及变压作用;交流滤波器滤除交流emc干扰;交流软启动回路由主交流接触器、辅助交流接触器及软启动电阻组成,实现上电时对后级直流母线电容的缓慢充电作用,避免上电瞬间产生大电流对储能变流器及电网的冲击;lc滤波回路由交流滤波电感及滤波电容组成,将桥式逆变电路产生的spwm波的高频成份滤除,得到光滑的交流波形;桥式逆变电路由igbt组成,igbt连接直流母线电容,同时igbt桥式逆变电路的每个桥臂都接有吸收电容,吸收电容对igbt桥式逆变电路动作时产生的高频尖峰进行吸收,起到保护igbt的作用,直流母线电容起到直流电压的支撑及滤波作用,igbt桥式逆变电路将直流电压波形逆变为高频spwm电压波形;直流滤波器滤除直流emc干扰。其储能容量的多少取决于负荷的需求。
储能变流器的直流侧通过直流母线连接蓄电池组;蓄电池组连接电池管理系统(bms);考虑到储能电池管理的需求,ems在进行能量管理计算和运行方式判断的时候,储能电池的状态是一个主要的限制因素,一般需要对电池进行均衡,对电池均衡时,一般要对电池进行分组充电,这个时候就要对直流母线进行分段,每段母线接入一个或几个pcs,对应一套或几套储能电池。在一些实施方式中,直流侧留有光伏、风电、电动汽车v2g等新能源直流接入端口,用于低压直流场所有光伏、风电、电动汽车v2g等分布式能源输入的工程场所。光伏、风电、电动汽车v2g等分布式发电一个比较大的特点是能源供给的不稳定,往往存在较大的波动,因此在应用时经常要配套储能电池,这类新能源供应的直流电可以接到本系统输入直流母线上,公用储能系统,也可通过pcs并网或并机使用。常用于如高速公路光储充系统、海岛风光储系统等工程项目设计中。在一些实施方式中,公开了一种储能变流器,其结构包括:三相支路,每一相支路包括:自并网/离网控制柜到直流蓄电池端,依次串联连接隔离变压器、交流滤波器、交流软启动回路、滤波电路、桥式逆变电路、直流母线电容、直流滤波器和直流软启动回路。保证系统稳定。光伏电站系统中,光伏输出功率曲线与负荷曲线存在较大差异。台州太阳能储能模组
光伏电站并网,尤其是大规模光伏电站并网对电网带来的影响是不可忽视的。上海助力车储能电池厂家
且通过在封盖上设置散热组件来对散热通道的热量进行散热以及快速排热,从而避免两电池储能箱之间的区域产生热量集中区,保证电池储能系统的安全性。附图说明附图1为本实用新型的整体结构的立体示意图;附图2为本实用新型的整体结构的侧视图;附图3为本实用新型的整体结构的俯视图;附图4为本实用新型的a-a向半剖示意图;附图5为本实用新型的电池储能箱的结构示意图;附图6为本实用新型的整体结构的示意图。具体实施方式下面结合附图对本实用新型作更进一步的说明。如附图1至附图4所示,***实施例:一种电池组的安全储能系统,包括基座1、封盖3、电池储能箱2和散热组件4,两组所述电池储能箱2间距设置在基座1的上方,且所述封盖3盖设在两组所述电池储能箱2的上方,所述封盖3通过锁紧组件等进行锁紧固定,保证两电池储能箱的稳定,两组所述电池储能箱2、基座1、封盖3之间形成具有水平方向上两端开口的散热通道6,在所述封盖3上沿散热通道6的长度方向设置有至少一组散热组件4,且所述散热组件4对应于散热通道6设置,所述散热组件4为散热扇,所述散热扇向散热通道6抽风或排风,以同时对两电池储能箱2进行散热,且所述散热扇通过电池储能箱2内部的电池组8进行供电。上海助力车储能电池厂家
浙江瑞田能源有限公司是一家有着先进的发展理念,先进的管理经验,在发展过程中不断完善自己,要求自己,不断创新,时刻准备着迎接更多挑战的活力公司,在浙江省等地区的能源中汇聚了大量的人脉以及**,在业界也收获了很多良好的评价,这些都源自于自身不努力和大家共同进步的结果,这些评价对我们而言是比较好的前进动力,也促使我们在以后的道路上保持奋发图强、一往无前的进取创新精神,努力把公司发展战略推向一个新高度,在全体员工共同努力之下,全力拼搏将共同浙江瑞田能源供应和您一起携手走向更好的未来,创造更有价值的产品,我们将以更好的状态,更认真的态度,更饱满的精力去创造,去拼搏,去努力,让我们一起更好更快的成长!