余热发电系统的发电量一直是电力企业设备管理人员关注的重点,影响余热发电系统发电量的因素很多,在保持现有生产工艺和现有能耗水平的情况下,提高余热发电系统的发电量要加强对余热发电系统设备的日常管理,优化完善设备巡检制度,做好对设备的日常监控与维护,每周对设备进行点检,排除设备隐患,定期切换备用设备,加强对设备的治理与技术改造,全方面排查锅炉、真空系统、振打装置等关键设备中损坏的零部件及漏点,详细记录每次的检查结果,确保每台设备都能随时投入安全、稳定的运行,提高锅炉的产气量。ORC低温余热发电适用于温度高于70℃以上的低温余热源。低温余热发电试验机组批发
2015年左右,国内又出现了另两种ORC系统,均来自国外企业。一种是采用涡轮膨胀机配普通大容量低速发电机的ORC发电系统,另一种是采用涡轮膨胀机配高速磁浮发电机的小容量ORC发电系统。这两种系统当时被认为各有千秋,但现实情况是,前一种系统看似成本低,但由于采用的是项目定制的生产模式,设计成本高且产品性能不稳定,无法真正运行。而后者因价格高,投资回收期长,且也存在设备运行不稳定的问题,也没能真正打开市场。近几年,国内迎来了研发ORC发电系统的高潮期。低温余热发电试验机组批发ORC余热发电系统主要由蒸发器、膨胀机、冷凝器和工质泵四个主要设备构成。
ORC余热发电的热效率高。系统本身使用导热油作为中间换热工质,因为导热油在300℃的条件下仍不汽化而保持常压,此时的水蒸气饱和压力已高达8.5MPa。300℃以下,用导热油代替传统的热载体水蒸气,就能以低压管道系统代替高压管道系统,降低投资。此外导热油还具有传热均匀,热稳定性好以及优良的导热特性。导热油对普通的碳钢设备和管道基本上无腐蚀作用,不需要采用类似蒸汽系统的给水脱盐、除氧等复杂的处理过程,因此具有系统简单输送方便等优点。因此用导热油作为工质的机组传热效率高。可选取与有机工质氟利昂不相溶解且不会发生化学反应的导热油,采用油与有机工质氟利昂直接接触热交换的方法,可进一步提高换热效率。
余热发电 [1]是利用生产过程中多余的热能转换为电能的技术。余热发电不仅节能,还有利于环境保护。余热发电的重要设备是余热锅炉。它利用废气、 废液等工质中的热或可燃质作热源,生产蒸汽用于发电。由于工质温度不高,故锅炉体积大,耗用金属多。用于发电的余热主要有:高温烟气余热,化学反应余热,废气、废液余热,低温余热(低于200℃)等。此外,还有用多余压差发电的;例如,高炉煤气在炉顶压力较高,可先经膨胀汽轮发电机继发电后再送煤气用户使用。ORC低温余热发电有助于降低和减少余热直接排向空中所引起的对环境的污染。
目前,多能互补综合能源系统中侧重于供能侧多种供能端的接入,形成了热电冷多联供的格局,极大的提高了能源供应的安全性。但在电耗的工业园区内,因为存在工业用户自身用电量大、波动性大等原因,导致整个系统中存在一定的电力缺口、电力供需不平衡等问题。一种多能互补的ORC低温余热发电系统,包括ORC发电子系统,还包括余热利用子系统,ORC发电子系统连接余热利用子系统,余热利用子系统包括并联连接的槽式聚光余热利用单元、溴化锂排烟余热利用单元和锅炉排烟余热利用单元,ORC发电子系统的工质泵输出端通过分流装置连接至余热利用子系统中的各个余热利用单元的输入端,各余热利用单元的输出端连接集热管,集热管连通至ORC发电子系统中的膨胀机。ORC低温余热发电效率高,系统构成简单,不需要设置除氧、除盐、排污及疏放水设施。乌鲁木齐高温余热发电
ORC低温余热发电行业的未来市场不在工业余热,而是在新能源领域。低温余热发电试验机组批发
ORC低温余热发电系统热力性能分析:由于受到蒸发器窄点温差的约束,各工质对应系统的蒸发温度随着排烟温度的升高而增大。在相同排烟温度条件下,采用R600a、R236ea的系统蒸发温度高于其他工质,R245fa、R600对应系统的蒸发温度相对较高,R123与湿工质R161、R152a对应系统的蒸发温度相对较低且较为接近。工质流量随排烟温度的升高而减小,这是因为当蒸发器入口热源温度不变时,根据热平衡方程,系统总吸热量随着排烟温度的升高而减小,满足此时热负荷所需的工质流量下降。在相同排烟温度下,工质间的物性差异导致各工质对应系统的工质流量存在差异,所有系统中烷烃类干工质R600a、R600与湿工质的流量明显小于其他干工质,变化幅度也相对较小,R236ea对应系统的流量较大且随排烟温度的变化幅度较大。低温余热发电试验机组批发