有机朗肯循环(ORCs)特别适用于回收低品位热源的能量。本文描述了一个用于从流量和温度可变的余热源中回收能量的小型ORC。传统的静态模型无法预测在变化的热源下循环的瞬态行为,而这种能力对于在部分负荷运行和启动和停止过程中模拟适当的循环控制策略是必不可少的。因此,提出了一个ORC的动态模型,特别关注热交换器的时变性能,其他部件的动态是次要的。提出并比较了三种不同的控制策略。仿真结果表明,基于各种工况下循环稳态优化的模型预测控制策略效果更好。ORC被认为是一项切实可行的绿色能源技术。云南ORC发电组
有机朗肯循环发电技术是在朗肯循环的基础上,采用低沸点的有机物作为循环工质,从温度相对较低热源吸收热量,然后膨胀做功从而带动发电机发电.与传统的使用水蒸汽作为工质的发电技术相比,该技术能够有效地把低品位的热能转化为高品位的电能,并具有系统结构简单,发电过程安全可靠等优势,在工业余热的回收,地热能,太阳能等新能源的开发利用领域具有较大的前景。有机朗肯循环在回收低品位热能具有很多有点,主要是:在回收中低品位热能时效率高、结构简单、工作压力对密封要求低、采用新型工质的有机朗肯循环对环境友好等特点,因此有机朗肯循环被认为是一项切实可行的绿色能源技术。高等的余热发电过程控制系统能确保余热发电过程的安全、可靠及经济运行。有机朗肯循环过程具有多变量强耦合、非线性和不确定性等特点,所以有必要选择一种先进的控制算法来提高余热发电过程的性能。山东220kwORC低温发电机组ORC电厂使用的空冷冷凝器要比水蒸气电厂使用的空冷冷凝器的体积小得多。
工质选择的基本原则:ORC发电系统的工质选择十分重要,选择过程中应该充分考虑工质的经济性、安全性和技术性。工质必须具有较低的临界温度和临界压力,较低的蒸汽过热要求并且粘度较低,以及较小的体积比,工质应具有适当的热稳定极限,和发动机材料、润滑油都具有较好的相容性。除性能要求外,工质也要满足环保的要求,而且要控制工质的毒性和满足化学稳定性要求,在经济性上也要足够低廉,并且输送储存都比较方便。选择工质时,更重要的在于工质的热力学性能,将会决定设备的尺寸、稳定性、环保水平很经济性。
有机朗肯循环(OrganicRankineCycle,简称ORC)是以低沸点有机物为工质的朗肯循环,主要由余热锅炉(或换热器)、透平、冷凝器和工质泵四大部套组成。ORC的工作原理如下:ORC循环中,工质的作用是将热源的热值提取出来,将温度转化为压力、动力、从而实现低温热源的动力输出。有机工质在换热器中从余热流中吸收热量,生成具一定压力和温度的蒸汽,蒸汽进入透平机械膨胀做功,从而带动发电机或拖动其它动力机械。从透平排出的蒸汽在凝汽器中向冷却水放热,凝结成液态,之后借助工质泵重新回到换热器,如此不断地循环下去。有机朗肯循环发电技术设备可实现标准模块化生产。
近年来,随着世界性的能源资源紧缺和全球性环境问题的日益严重,各国已在紧张的研究相关技术理论或制定相应政策应对、缓解该问题。基于低品位热能利用的有机朗肯循环(OrganicRankineCycle,ORC)是降低能源燃料消耗、节能减排的有效措施和手段,成为世界各国学者、科研机构、高等院校研究的重点课题,采用新型的冷电、热电或冷热电联供循环是提高低品位热能利用ORC系统效率和优化其性能的有效途径之一。应用于ORC系统的有机工质具有一定的GWP值、ODP值等环境潜值,都将对环境产生一定的影响,在其生产和运输过程中可能对环境造成一定的污染,ORC系统运行过程中工质泄漏也必将加剧全球变暖、臭氧层的破坏。ORC的结构非常的简单。低温orc发电售价
ORC主要由余热锅炉(或换热器)、透平、冷凝器和工质泵四大部套组成。云南ORC发电组
ORC低温余热发电技术研究利用现状:国外对于低温余热的研究开始于20世纪70年代,其中对ORC系统进行研究的更早,早在20世纪20年代初期,就有人开始研究使用苯醚为工质的有机朗肯循环系统。总结了国外一部分ORC系统设备生产商及相应的技术参数,研究发现比较适合用于300℃以下的余热热源。工业余热资源回收潜力和余热发电环保效应巨大,美国公司曾经建造了利用炼油厂为余热(110℃)的ORC系统,该系统运用单级向心透平,有机工质为R113,输出功率约为1174KW。日本曾建造了以工业废热为热源的ORC系统,更终取得了良好的社会和经济效益。云南ORC发电组