生物炭具有离子吸附交换能力及一定吸附容量,其可改善土壤的阳离子或阴离子交换量,从而可提高土壤的保肥能力。生物炭对土壤阳离子交换量CEC或保肥能力的改善取决于生物炭的CEC,pH及生物炭在土壤中氧化。生物炭比表面积大,可以增强土壤对阳离子的吸附能力,增加耕层土壤CEC。生物炭对低CEC和pH的酸性土壤中的CEC改良特别有效,其中土壤CEC的改良与生物炭的原料的碱度、有机氮的矿化和铵根的硝化作用有关。生物炭的pH升高,其对重金属离子的吸附和固定加强,说明了生物炭对重金属的吸附与生物炭的表面官能团和pH值有关。生物质炭在土壤中的长期固碳功能是生物质炭重要的功能之一。四川树苗生物质炭培养方法
生物质炭是由有机植物残体(如秸秆、木屑等)在无氧或缺氧条件下高温热裂解制备而成的高含碳稳定物质,它的主要特性是强吸附性、惰性、绿色环保性。经粉碎处理的生物质炭可以加入到面膜、洗面奶、沐浴液等美容产品中,对皮肤起到深层清洁、调节油脂的作用;生物质炭用于居家设备中,如炭包、清洁球等,可以净化空气,吸附空气中的苯、甲醛残留:此外,经过处理的生物质炭还可制成肥料或改良剂用于农田土壤改造中,不仅供给土壤养分,还可改良士壤结构,改善士壤微生物状况,修复酸性士壤。云南芦苇生物质炭功能是什么生物炭多孔状、容重低、粘性小,能够降低粘质土壤的容重和硬度,改善土壤板结,提高土壤的透气性。
生物炭(Biochar)是利用生物残体在缺氧的情况下,经高温慢热解(通常<700℃)产生的一类难溶的、稳定的、高度芳香化的、富含碳素的固态物[1]。生物炭多为颗粒细、质地较轻的黑色蓬松状固态物质,主要组成元素为碳、氢、氧、氮等,含碳量多在70%以上。生物炭可溶性极低,具有高度羧酸酯化和芳香化结构[2–3],其原料来源,农业废弃物如鸡粪、猪粪、木屑、秸秆以及工业有机废弃物、城市污泥等都可作为其原料[4]。生物炭原材料尺寸的大小会影响到生物炭产率,主要表现为尺寸增大生物炭产量随之增加。
生物质(秸秆和枯枝落叶等)利用是长久而不竭的主题。我国每年生物质产量约为7亿吨,并随产量增加而有增加趋势。远在西周时期(公元前11世纪至公元前8世纪),中国农民就从实践中逐步认识到将杂草、秸秆和枯枝落叶燃烧成草木灰还田有利于作物的生长;14世纪初叶,王祯在《农书.粪壤篇》中把草木灰列为一大类农家肥料。北魏时期,贾思勰在《齐民要术》(约成书于公元533年至544年)中就提到用松制墨(炭黑)的方法和炭黑性质。在我国农田、草地和森林,经常可以看到没有分解的火烧黑色物质-生物炭。从2005年开始,随着巴西亚马逊流域考古发现一种黑色土壤,被称为黑土((blackearths,或terrapretadeindio(葡萄牙语)比周围黄色土壤具有更高的碳含量和产量,激起了人们利用生物炭储存碳和提高土壤生产力的兴趣。目前制备生物炭的原料有秸秆、枯枝落叶、畜禽粪便、骨头、和污泥等。制备方法有无氧裂解法、半无氧裂解法、土窑法、燃烧淋水法、燃烧掩土法、土坑法等。制备温度从200℃到1000℃,大多集中在300-600℃。生物质炭降解过程包括非生物过程和生物过程。
生物炭的理化参数主要包括:全碳含量、灰分含量、挥发成分含量、表面元素组成及表面官能团种类和含量、表面负电荷含量等;结构表征主要包括:表面形态和孔隙结构(如比表面积、孔容积和孔径分布等。由于原材料、技术工艺及热解条件等差异,生物炭在结构、挥发成分含量、灰分含量、孔容、比表面积等理化性质上表现出非常的多样性,进而使其拥有不同的环境效应[。目前,国内学者就生物炭的特性、环境行为和效应、土壤性状和产量、碳截留与温室气体减排及其对全球生物地球化学循环影响等领域已开展了大量研究。生物质炭可吸持氮、磷、钾等无机养分,能够控制养分缓慢释放,避免养分的挥发和流失,提高肥料的使用效率。中国香港生物质炭培养方法
生物质炭含有发达的孔隙,施用于土壤,可有效降低土壤容重,改善土壤孔隙结构。四川树苗生物质炭培养方法
生物质炭不仅是含碳量丰富的稳定物质,而且具有多孔结构、容重小、比表面积大和吸附能力强等特性,在自然条件下通常呈碱性。由于生物质炭的容重远低于矿质土壤,其添加往往可以降低土壤的容重。生物质炭的孔隙分布、颗粒大小以及在土壤中的移动都可以影响土壤孔隙结构,其多孔结构使表层土壤孔隙度增加,进而促进微生物的活动和植物根系的生长。生物质炭可以吸附和保持土壤水分,增强水分的渗透性;其对土壤孔径和分布的改变,可以影响土壤水分的渗滤模式、停留时间和流动路径。生物质炭的添加不仅有利于土壤团聚结构的改善和稳定,其自身也因团聚体的物理保护作用而得以在土壤中长期存留。四川树苗生物质炭培养方法