下面将分类介绍一下各类研究用镜检术。在材料研究领域,反射式明场显微镜得到普遍应用,在此基础上各种特殊的镜检方法也得到应用,如暗场,偏光,相衬,干涉,荧光,这些镜检方法在高级显微镜上均能同时实现。明视野镜检是大家比较熟悉的一种镜检方式,普遍应用于病理、检验,用于观察被染色的切片,所有显微镜均能完成此功能。在此不再赘述。暗视野实际是暗场照明。... 【查看详情】
显微镜倍数、分辨率、视场范围、景深和工作距离要求,如何组合才能真正满足客户要求显微镜倍数通过目镜物镜主体来改变,分辨率通过数字、模拟CCD监视器来解决。视场范围,景深和工作距离根据要求选用不同倍数的目镜和物镜。比如有的用户要求有较大的放大倍数,但工作距离没有太多要求,则选择一个放大倍数较大的物镜。如果用户要在显微镜下进行操作,则必须要选择... 【查看详情】
荧光显微镜有哪些激发光源?目前市面上90%以上的显微镜自带的光源都只有用于照明的白光,而带有激发光源用于生物观测的荧光显微镜价格比较昂贵而且波段少,因此为显微镜匹配单独的荧光激发光源成为物质观测的主选。荧光显微镜通过激发光源激发标本发出荧光,再通过物镜、目镜放大系统来观测标本的荧光现象来进行生物研究。荧光显微镜常用的激发光源:汞灯:高压汞... 【查看详情】
原子力显微镜使用超微针尖靠近样品表面,样品表面与针尖的原子间相互作用力使得针尖所在的悬臂发生微小形变,被放大测量后转化成样品表面形貌的信息。横向分辨率能够达到纳米量级,其分辨率极大依赖于探针工艺的精细程度,若以比较先进的碳纳米管做探针,横向分辨率则能突破埃量级。原子力显微镜除了用于样品表面形貌成像外,还是显微操作的重要工具,对针尖表面进行... 【查看详情】
取用和放置使用时首先从镜箱中取出显微镜,必须一手握持镜臂,一手托住镜座,保持镜身直立,切不可用一只手倾斜提携,防止摔落目镜。要轻取轻放,放时使镜臂朝向自己,距桌边沿5-10厘米处。要求桌子平衡,桌面清洁,避免直射阳光。开启光源打开电源开关。放置玻片标本将待镜检的玻片标本放置在载物台上,使其中材料正对通光孔中间。再用弹簧压片夹在玻片的两端,... 【查看详情】
放大率就是放大倍数,是指被检验物体经物镜放大再经目镜放大后,人眼所看到的图像的大小对原物体大小的比值,是显微物镜和目镜放大倍数的乘积。放大率也是显微镜的重要参数,但也不能盲目相信放大率越高越好,在选择时应首先考虑物镜的数值孔径。焦深为焦点深度的简称,即在使用显微镜时,当焦点对准某一物体时,不但位于该点平面上的各点都可以看清楚,而且在此平面... 【查看详情】
电子显微镜由电子光学系统、真空系统和供电系统三部分组成,下面分别介绍三部分:电子光学系统:电子光学系统主要有电子枪、电子透镜、样品架、荧光屏和照相机构等部件,这些部件通常是自上而下地装配成一个柱体。电子喷头是由钨丝热阴极、栅极和阴极构成的部件。它能发射并形成速度均匀的电子束,所以加速电压的稳定度要求不低于万分之一。电子透镜是电子显微镜镜筒... 【查看详情】
立体显微镜采用两个立的光学通路生成三维的光学影像,因此也叫实体显微镜、解剖显微镜,属于低倍数的复式光学显微镜。从19纪90年代(1890年)被美仪器工程师为美有名雕塑家和作家发明,并被蔡司公司生产以来,对科学研究、考古探索、工业质量控制和生物制药等域的发展都产生了积的影响。为了发挥立体显微镜的大功效,正确使用操作立体显微镜尤其重要。为了让... 【查看详情】
原子力显微镜使用超微针尖靠近样品表面,样品表面与针尖的原子间相互作用力使得针尖所在的悬臂发生微小形变,被放大测量后转化成样品表面形貌的信息。横向分辨率能够达到纳米量级,其分辨率极大依赖于探针工艺的精细程度,若以比较先进的碳纳米管做探针,横向分辨率则能突破埃量级。原子力显微镜除了用于样品表面形貌成像外,还是显微操作的重要工具,对针尖表面进行... 【查看详情】
显微镜的重要光学技术参数:在镜检时,人们总是希望能得到清晰而明亮的理想图像,这就需要显微镜的各项光学技术参数达到一定的标准,并且要求在使用时,必须根据镜检的目的和实际情况来协调各参数的关系。只有这样,才能充分发挥显微镜应有的性能,得到满意的镜检效果。显微镜的光学技术参数包括:数值孔径、分辨率、放大率、焦深、视场宽度、覆盖差、工作距离等等。... 【查看详情】
激光扫描共聚焦显微镜利用激光束经照明形成点光源对标本内焦平面的每一点扫描,标本上的被照射点,在探测处成像,由探测后的光点倍增管或冷电耦器件逐点或逐线接收,迅速在计算机监视器屏幕上形成荧光图像。从生产的角度,分析全球主要地区共聚焦拉曼显微镜产量、产值(万元)、增长率、市场份额及未来发展趋势,主要包括美国、欧洲、日本、中国、东南亚及印度地区。... 【查看详情】
冷冻电镜已有几十年的历史了,它的原理是向快速冷冻的样品发射电子并记录生成的图像从而确定其形状。探测回弹电子的技术以及图像分析软件的进步触发了一场始于2013年的“分辨率改变”,并让研究人员较终得到了较清晰的蛋白质结构——几乎与利用X射线晶体技术得到的结果一样好。X射线晶体技术的出现时间更早,主要根据蛋白质晶体被X射线轰击时形成的衍射图案推... 【查看详情】